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Abstract. The probability Psuccess(α, N) that stochastic greedy algorithms successfully solve the random
SATisfiability problem is studied as a function of the ratio α of constraints per variable and the number N
of variables. These algorithms assign variables according to the unit-propagation (UP) rule in presence
of constraints involving a unique variable (1-clauses), to some heuristic (H) prescription otherwise. In
the infinite N limit, Psuccess vanishes at some critical ratio αH which depends on the heuristic H . We
show that the critical behaviour is determined by the UP rule only. In the case where only constraints
with 2 and 3 variables are present, we give the phase diagram and identify two universality classes: the
power law class, where Psuccess[αH(1 + εN−1/3), N ] ∼ A(ε)/Nγ ; the stretched exponential class, where
Psuccess[αH(1 + εN−1/3), N ] ∼ exp[−N1/6 Φ(ε)]. Which class is selected depends on the characteristic
parameters of input data. The critical exponent γ is universal and calculated; the scaling functions A and Φ
weakly depend on the heuristic H and are obtained from the solutions of reaction-diffusion equations for
1-clauses. Computation of some non-universal corrections allows us to match numerical results with good
precision. The critical behaviour for constraints with > 3 variables is given. Our results are interpreted
in terms of dynamical graph percolation and we argue that they should apply to more general situations
where UP is used.

PACS. 89.20.Ff Computer science and technology – 05.40.-a Fluctuation phenomena, random processes,
noise, and Brownian motion – 02.50.Ey Stochastic processes – 89.75.Da Systems obeying scaling laws

1 Introduction

Many computational problems rooted in practical appli-
cations or issued from theoretical considerations are con-
sidered to be very difficult in that all exact algorithms
designed so far have (worst-case) running times growing
exponentially with the size N of the input. To tackle
such problems one is thus enticed to look for random-
ized (stochastic) polynomial-time algorithms, guaranteed
to run fast but not to find a solution. The key estimator of
the performances of these search procedures is the proba-
bility of success, Psuccess(N), that is, the probability over
the stochastic choices carried out by the algorithm that a
solution is found (when it exists) in polynomial time, say,
less than N . Roughly speaking, depending on the problem
to be solved and the nature of the input, two cases may
arise in the large N limit1

Psuccess(N) =
{

Θ(1) (success case)
exp(−Θ(N)) (failure case).

(1)

� Preprint LPTENS-05/24.
a e-mail: christophe.deroulers@lpt.ens.fr
1 Recall that f(x) = Θ(x) means that there exist three

strictly positive real numbers X, a, b such that, ∀x > X,
ax < f(x) < bx.

When Psuccess is bounded from below by a strictly positive
number at large N , a few runs will be sufficient to provide
a solution or a (probabilistic) proof of absence of solution;
this case is referred to as success case in the following. Un-
fortunately, in many cases, Psuccess is exponentially small
in the system’s size and an exponentially large number of
runs is necessary to reach a conclusion about the existence
or not of a solution; this situation is hereafter denoted by
failure case.

An example is provided by the K-SAT problem, infor-
mally defined as follows. An instance of K-SAT is a set
of constraints (called clauses) over a set of Boolean vari-
ables. Each constraint is the logical OR of K variables or
their negations. Solving an instance means either finding
an assignment of the variables that satisfies all clauses, or
proving that no such assignment exists. While 2-SAT can
be solved in a time linear in the instance size [1], K-SAT
with K ≥ 3 is NP-complete [2]. The worst-case running
time may be quite different from the running time once
averaged over some distribution of inputs. A simple and
theoretically-motivated distribution consists in choosing,
independently for each clause, a K-uplet of distinct vari-
ables, and negate each of them with probability one half.
The K-SAT problem, together with the flat distribution
of instances is called random K-SAT.
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In the past twenty years, various randomized algo-
rithms were designed to solve the random 3-SAT prob-
lem in linear time with a strictly positive probability
Psuccess [3] when the numbers M of clauses and N of vari-
ables tend to infinity at a fixed ratio2 α = M/N . These
algorithms are based on the recognition of the special role
played by clauses involving a unique variable, called unit-
clauses (unit-clauses are initially absent from the instance
but may result from the operation of the algorithm), and
obey the following

Unit-Propagation (UP) rule: when the instance

includes (at least) a unit-clause, satisfy this

clause by assigning its variable appropriately,

prior to any other action.

UP merely asserts that drawing obvious logical conse-
quences from the constraints is better done first. Its
strength lies in its recursive character: assignment of a
variable from a 1-clause may create further 1-clauses, and
lead to further assignments. Hence, the propagation of log-
ical constraints is very efficient to reduce the size of the
instance to be treated. In the absence of unit-clause, some
choice has to be made for the variable to assign and the
truth value to give. This choice is usually made according
to some heuristic, the simplest one being

Random (R) heuristic: when the instance in-

cludes no unit-clause, pick any unset variable

uniformly at random, and set it to True or False

with probabilities one half.

The specification of the heuristic e.g. R, together with
UP, entirely defines the randomized search algorithm3.
The output of the procedure is either ‘Solution’ if a solu-
tion is found, or ‘Don’t know’ if a contradiction (two op-
posite unit-clauses) is encountered. The probability that
the procedure finds a solution, averaged over the choices
of instances with ratio α, was studied by Chao and
Franco [7,5], Frieze and Suen [8], with the result

lim
N→∞

Psuccess(α, N) =
{

Θ(1) if α < αR = 8
3

0 if α > αR
(2)

for Random 3-SAT, R heuristic & UP. The above study
was then extended to more sophisticated and powerful
heuristic rules H, defined in Section 2.2. It appears that
identity (2) holds for all the randomized algorithms based
on UP and a heuristic rule H, with a critical ratio value
αH that depends on H. Cocco and Monasson then showed
that, for ratios above αH, the probability of success is
indeed exponentially small in N , in agreement with the
generally expected behaviour (1).

The transition from success to failure in random 3-SAT
was quantitatively studied in a recent letter [9]. We found
that the width of the transition scales as N−1/3, and that

2 Other scalings for M, N were investigated too and appear
to be easier to handle, see reference [4].

3 This procedure is called the Unit-Clause algorithm in the
computer science literature [5,6].

the probability of success in the critical regime behaves
as a stretched exponential of N with exponent 1/6. More
precisely,

Psuccess

[
αH(1 + εN−1/3), N

]
=

exp
(
−N1/6 Φ(ε) [1 + o(1)]

)
(3)

for Random 3-SAT, and UP. The calculation of the scal-
ing function Φ relies on an accurate characterization of
the critical distribution of the number of unit clauses,
for an exact expression see equation (111). The impor-
tant statement here is that the above expression holds in-
dependently of the heuristic H, provided the randomized
procedure obeys UP4. This result allowed us to evoke the
existence of a universality class related to UP.

In the present paper, we provide all the calculations
which led us to equation (3). We also calculate subdom-
inant corrections to the N1/6 scaling of lnPsuccess in (3),
which allow us to account for numerical experiments in a
more accurate manner than in reference [9] (see Sect. 6).
In addition, we study the robustness of the stretched expo-
nential behaviour with respect to variations in the prob-
lem to be solved. We argue that the class of problems
to be considered for this purpose is random 2+p-SAT,
where instances are mixed 2- and 3-SAT instances with
relative fractions p and 1 − p (for fixed 0 ≤ p ≤ 1) [10].
Our results are sketched in Figure 1. It is found that the
stretched exponential behaviour holds for a whole set of
critical random 2+p-SAT problems, but not all of them.
More precisely, equation (3) remains true for p ≥ 2/5. For
p < 2/5, the probability of success at criticality decreases
as a power law only,

Psuccess

[
αR(p) (1 + εN−1/3), N

]
=

AH(ε, p)
Nγ(p)

[1+o(1)] (4)

for Random 2+p-SAT, p < 2/5, and UP. The value of
the universal decay exponent is γ(p) = (1−p)/(2−5p)/6.
The calculation of the prefactor AH(p, ε) shows similarities
with the one of Φ(ε) above, but is more difficult and shown
in Section 5.

2 Definitions and brief overview of known
results

2.1 Random K-SAT and 2 + p-SAT problems

In the random K-SAT problem [11,12], where K is an in-
teger no less than 2, one wants to find a solution to a set
of M = αN randomly drawn constraints (called clauses)
over a set of N Boolean variables xi (i = 1 . . .N): xi

can take only two values, namely True (T ) and False (F ).

4 Strictly speaking, Φ depends on H through two global mag-
nification ratios along the X and Y axis: ΦH(ε) = yHΦ(xH ε),
where xH, yH are heuristic-dependent real numbers and Φ is
universal.
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Fig. 1. Scaling of the probability of success of randomized
search algorithm based on a heuristic H and the UP rule for
the 2+p-SAT model with instances of size N and having α
clauses per variable. The dynamic (or kinetic) critical line is
represented for the R heuristic, αR(p) = 1/(1− p) for p < 2/5,
24p/(2 + p)2 for p > 2/5 separates the failure phase (upper
region) from the success phase (lower region). Along the crit-
ical line, Psuccess decays as a power law for p < 2/5 with a
p-dependent exponent γ(p) = (1 − p)/(2 − 5p)/6, and as a
stretched exponential with exponent 1/6 when p > 2/5. The
static critical line (dashed curve) coincide with the dynamic
one for p < 2/5 and lies above for larger values of p, see
Section 2.1.

Each constraint reads zi1 ∨zi2 ∨ . . .∨ziK , where ∨ denotes
the logical OR; z� is called a literal : it is either a variable
xi�

or its negation x̄i�
with equal probabilities (= 1/2),

and (i1, i2, . . . , iK) is a K-uplet of distinct integers unbi-
asedly drawn from the set of the

(
N
K

)
K-uplets. Such a

clause with K literals is called a K-clause, or clause of
length K. Such a set of M clauses involving N variables is
named an instance or formula of the K-SAT problem. An
instance is either satisfiable (there exists at least one satis-
fying assignment) or unsatisfiable (contrary case). We will
be mainly interested in the large N , large M limit with
fixed α = M/N and K. Notice that the results presented
in this paper are, or have been obtained for this ‘flat’ dis-
tribution only, and do not hold for real-world, industrial
instances of the SAT problem.

A distribution of constraints will appear naturally
in the course of our study: the random 2+p-SAT prob-
lem [10]. For fixed 0 ≤ p ≤ 1, each one of the M = αN
clauses is of length either 2 or 3, with respective proba-
bilities 1− p and p. Parameter p allows one to interpolate
between 2-SAT (p = 0) and 3-SAT (p = 1).

Experiments and theory show that the probability Psat

that a randomly drawn instance with parameters p, α be
satisfiable is, in the large N limit, equal to 0 (respec-
tively, 1) if the ratio α is smaller (resp., larger) than
some critical value αC(p). Nowadays, the value of αC(p)
is rigorously known for p ≤ 2/5 only, with the result
αC(p) = 1/(1 − p) [13], see Figure 1. For 3-SAT the

best current upper and lower bounds to the threshold
are 4.506 [14] and 3.52 [15] respectively. For finite but
large N , the steep decrease of Psat with α (at fixed p)
takes place over a small change δα = Θ(N− 1

ν ) in the
ratio of variables per clause, called width of the tran-
sition. Wilson has shown that the width exponent ν is
bounded from below by 2 (for all values of p) [16]. For 2-
SAT, a detailed study by Bollobàs et al. establishes that
ν = 3 [17], and that Psat is finite at the threshold α = 1.
A numerical estimate of this critical Psat may be found in
reference [18] and we provide a more precise one in Ap-
pendix A: Psat(p = 0, α = 1) = 0.907± 10−3.

2.2 Greedy randomized search algorithms

In this paper, we are not interested in the probability of
satisfaction Psat (which is a property characteristic of the
random SAT problem only) but in the probability Psuccess

(≤Psat) that certain algorithms are capable of finding a
solution to randomly drawn instances. These algorithms
are defined as follows.

Initially [11,12,19], all variables are unset and all
clauses have their initial length (K in the K-SAT case, 2
or 3 in the 2+p-SAT case). Then the algorithms iteratively
set variables to the value T (true) or F (false) according
to two well-defined rules (mentioned in the introduction
and detailed below), and update (reduce) the constraints
accordingly. For instance, the 3-clause (x̄1 ∨ x̄2 ∨ x3) is
turned into the 2-clause (x̄1 ∨ x3) if x2 is set to T , and is
satisfied, hence removed from the list of clauses, if x2 is
set to F . A 1-clause (or unit-clause) like x̄1 may become
a 0-clause if its variable happens to be inappropriately as-
signed (here, to T ); this is called a contradiction. In this
case, the algorithms halt and output ‘don’t know’, since it
can not be decided whether the contradiction results from
a inadequate assignment of variables (while the original
instance is satisfiable) or from the fact that the instance
is not satisfiable. If no contradiction is ever produced, the
process ends up when all clauses have been satisfied and
removed, and a solution (or a set of solutions if some vari-
able are not assigned yet) is found. The output of the
algorithms is then ‘Satisfiable’.

We now make explicit the aforementioned rules
for variable assignment. The first rule, UP (for Unit-
Propagation) [8], is common to all algorithms: if a clause
with a unique variable (a 1-clause), e.g. x̄1, is produced at
some stage of the procedure, then this variable is assigned
to satisfy the clause, e.g. x1 := F . UP is a corner stone
of practical SAT solvers. Ignoring a 1-clause means taking
the risk that it becomes a 0-clause later on (and makes
the whole search process fail), while making the search
uselessly longer in the case of an unsatisfiable instance5.

5 Another fundamental rule in SAT solvers that we do not
consider explicitly here, although it is contained in the CL
heuristic [15] to which our results apply, is the Pure Literal
rule [3], where one assigns only variables (called pure literals)
that appear always the same way in clauses, i.e. always negated
or always not negated). Removal of pure literals and of their
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Therefore, as long as unit-clauses are present, the algo-
rithms try to satisfy them by proper variable assignment.
New 1-clauses may be in turn produced by simplification
of 2-clauses, and 0-clauses (contradictions) when several
1-clauses require the same variable to take opposite logical
values.

The second rule is a specific and arbitrary prescription
for variable assignment taking over UP when it cannot be
used i.e. in the absence of 1-clause. It is termed heuristic
rule because it does not rely on a logical principle as the
UP rule. In the simplest heuristic, referred to as random
(R) here, the prescription is to set any unassigned vari-
able to T or F with probability 1/2 independently of the
remaining clauses [5,8]. More sophisticated heuristics are
able to choose a variable that will satisfy (thus eliminate)
the largest number of clauses while minimizing the odds
that a contradiction is produced later. Some examples are:
1. GUC [5] (for Generalized Unit Clause) prescribes to

take a variable in the shortest clause available, and
to assign this variable so as to satisfy this clause. In
particular, when there are no 1-clauses, 2-clauses are
removed first, which decreases the future production
of 1-clauses and thus of contradictions.

2. HL [15] (for Heaviest Literal) prescribes to take (in ab-
sence of 1-clauses, as always) the literal that appears
most in the reduced instance (at the time of choice),
and to set it to T (by assigning accordingly its vari-
able), disregarding the number of occurrences of its
negation or the length of the clauses it appears in.

3. CL [15] (for Complementary Literals) prescribes to
take a variable according to the number of occurrences
of it and of its negation in a rather complex way,
such that the number of 2-clauses decreases maximally
without making the number of 3-clauses too much de-
crease.

4. KCNFS [20] is an even more complex heuristic, spe-
cially designed to reduce the number of backtrackings
needed to prove that a given instance is unsatisfiable,
on top of standard tricks to improve the search.

2.3 The success-to-failure transition

Chao and Franco have studied the probability Psuccess that
the randomized search process based on UP and the R
heuristic, called UC (for unit-clause) algorithm, success-
fully finds a solution to instances of random 3-SAT with
characteristic parameters α, N [5], with the result (2).
This study was extended by Achlioptas et al. to the case
of random 2+p-SAT [13], with the following outcome:

lim
N→∞

Psuccess(α, p, N)
> 0 if α < αR(p)
= 0 if α > αR(p)

(5)

for the R heuristic and UP, where

αR(p) =
1

1− p
if p ≤ 2

5
,

24 p

(2 + p)2
if p ≥ 2

5
. (6)

attached clauses make the instance shorter without affecting
its logical status (satisfiable or not).

Hence, as simple as is UC, this procedure is capable to
reach the critical threshold αC(p) separating satisfiable
from unsatisfiable instances when p ≤ 2/5. For p > 2/5, a
finite gap separates αR(p) from αC(p) in which instances
are (in the large N limit) almost surely satisfiable but UC
has a vanishingly small probability of success.

Similar results were obtained for the heuristics H listed
above, especially for p = 1 (3-SAT). The smallest ratios,
called thresholds and denoted by αH, at which Psuccess

vanishes in the infinite N limit are: αGUC � 3.003 [5],
αHL � 3.42 [15], αCL � 3.52 [15]. The 3-SAT threshold
for the KCNFS heuristic is not known.

In this paper, we are interested in the critical scaling
of Psuccess with N , that is, when α is chosen to be equal,
or very close to its critical and heuristic-dependent value
αH (at fixed p). More precisely, we show that Psuccess may
vanish either as a stretched exponential (3) or as an inverse
power law (4). Strikingly, although the randomized search
algorithms based on different heuristics exhibit quite dif-
ferent performances e.g. values of αH, we claim that the
scaling of Psuccess at criticality is essentially unique. The
mechanism that monitors the transition from success to
failure at αH of the corresponding algorithms is indeed
UP. For instance, for KCNFS, a numerical study shows
that the special, complex heuristic is never used when α
is close to the αKCNFS threshold of this algorithm.

Hereafter, we show that universality holds for random
K-SAT with K ≥ 3 and for 2+p-SAT with p ≥ 2/5 one
the one hand, and p < 2/5 on the other hand. In the p <
2/5 case, for which αH and αC coincide (Sect. 5), there is
strictly speaking an infinite family of universality classes,
depending on the parameter p (in particular, the critical
exponent γH(p) — see (4) — varies continuously with p).
These analytical predictions are confirmed by numerical
investigations.

3 Generating function framework
for the kinetics of search

This section is devoted to the analysis of the greedy
UC = UP + R algorithm, defined in the previous sec-
tion, on instances of the random 2 + p-SAT or K-SAT
problems. We introduce a generating function formalism
to take into account the variety of instances which can be
produced in the course of the search process. We shall use
b(n; m, q) =

(
m
n

)
qn(1− q)m−n to denote the Binomial dis-

tribution, and δn,m to represent the Kronecker function
over integers n: δn,m = {1 if n = m, 0 otherwise}.

3.1 The evolution of the search process

For the random 2 + p-SAT and K-SAT distributions of
boolean formulas (instances), it was shown by Chao and
Franco [7,5] that, during the first descent in the search tree
i.e. prior to any backtracking, the distribution of residual
formulas (instances reduced because of the partial assign-
ment of variables) keeps its uniformity conditioned to the
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numbers of �-clauses (0 ≤ � ≤ K). This statement remains
correct for heuristics slightly more sophisticated than R
e.g. GUC, SC1 [5–7], and was recently extended to split-
ting heuristics based on literal occurrences such as HL and
CL [15]. Therefore, we have to keep track only of these
numbers of �-clauses instead of the full detailed residual
formulas: our phase space has dimension K +1 in the case
of K-SAT (4 for 2+p-SAT). Moreover, this makes random
2 + p-SAT a natural problem. After partial reduction by
the algorithm, a 3-SAT formula is turned into a 2 + p-SAT
formula, where p depends on the steps the algorithm has
already performed.

Call P (C; T ) the probability that the search process
leads, after T assignments, to a clause vector C = (C0,
C1, C2, . . . , CK). Then, we have

P (C′; T + 1) =
∑
C

M [C′ ← C; T ] P (C; T ) (7)

where the transition matrix M is

M [C′ ← C; T ] =
(
1− δC1,0

)
MUP[C′ ← C; T ]

+ δC1,0 MR[C′ ← C; T ]. (8)

The transitions matrices corresponding to unit-
propagation (UP) and the random heuristic (R) are

MX [C′ ← C; T ] =
CK∑

zK=0

b[zK ; CK , Kµ]

×
zK∑

rK−1=0

b

[
rK−1; zK ,

1
2

]
δC′

K,CK−zK

×
CK−1∑

zK−1=0

b[zK−1; CK−1, (K − 1)µ]

×
zK−1∑

rK−2=0

b

[
rK−2; zK−1,

1
2

]
δC′

K−1,CK−1−zK−1+rK−1

× . . .×
C2∑

z2=0

b[z2; C2, 2µ]

×
z2∑

r1=0

b

[
r1; z2,

1
2

]
δC′

2,C2−z2+r2FX [C′
1, C1, r1, C

′
0, C0, µ]

(9)

where µ := 1
N−T and, for X=UP and R,

FUP :=
C1−1∑
z1=0

b[z1; C1 − 1, µ] δC′
1,C1−1−z1+r1

×
z1∑

r0=0

b

[
r0; z1,

1
2

]
δC′

0,C0+r0 ,

FR := δC′
1,r1δC′

0,C0 . (10)

The above expressions for the transition matrices can be
understood as follows. Let A be the variable assignment

after T assignments, and F the residual formula. Call C
the clause vector of F . Assume first that C1 ≥ 1. Pick
up one 1-clause, say, �. Call zj the number of j-clauses
that contain �̄ or � (for j = 1, 2, 3). Due to uniformity,
the zj ’s are binomial variables with parameter j/(N − T )
among Cj − δj,1 (the 1-clause that is satisfied through
unit-propagation is removed). Among the zj clauses, rj−1

contained �̄ and are reduced to (j − 1)-clauses, while the
remaining zj − rj−1 contained � and are satisfied and re-
moved. rj−1 is a binomial variable with parameter 1/2
among zj . 0-clauses are never destroyed and accumulate.
The new clause vector C′ is expressed from C and the
zj+1’s, rj ’s using Kronecker functions; thus, MP [C′,C; T ]
expresses the probability that a residual formula at step T
with clause vector C gives rise to a (non violated) residual
instance at step T + 1 through unit-propagation. Assume
now C1 = 0. Then, a yet unset variable is chosen and set
to T or F uniformly at random. The calculation of the new
vector C′ is identical to the unit-propagation case above,
except that z1 = r0 = 0 (absence of 1-clause). Hence,
putting both C1 ≥ 1 and C1 = 0 contributions together,
M [C′ ← C; T ] expresses the probability to have an in-
stance after T + 1 assignments and with clause vector C′
produced from an instance with T assigned variables and
clause vector C.

3.2 Generating functions for the numbers of clauses

It is convenient to introduce the generating function
G(X ; T ) of the probability P (C ; T ) where

X := (X0, X1, X2, . . . , XK),

G(X ; T ) :=
∑
C

XC0
0 XC1

1 . . . X CK

K P (C , T ).

Evolution equation (7) for the P ’s can be rewritten in
terms of a recurrence relation for the generating func-
tion G,

G(X ; T + 1 ) =
1
f1

G
(
X0, f1, f2, . . . , fK ; T

)

+
(

1− 1
f1

)
G

(
X0, 0, f2, f3, . . . , fK ; T

)
(11)

where f1, . . . , fK stand for the functions

fj(X; T ) := Xj +
j

N − T

(
1 + Xj−1

2
−Xj

)
(12)

(j = 1, . . . , K). Notice that probability conservation is
achieved in this equation: G(1, 1, . . . , 1; T ) = 1 for all T .

Variants of the R heuristic will translate into addi-
tional contributions to the recurrence relation (11). For
instance, if the algorithm stops as soon as there are no
reducible clauses left (C1 = C2 = . . . = CK = 0) in-
stead of assigning all remaining variables at random (such



344 The European Physical Journal B

a variation is closer to what is used in a practical search
algorithm), the transition matrix is modified into

M [C′ ← C; T ] =
(
1− δC1,0

)
MUP[C′ ← C; T ]

+ δC1,0

(
1− δC2,0δC3,0 . . . δCK,0

)
MR[C′ ← C; T ] (13)

and equation (11) becomes

G(X ; T + 1 ) =
1
f1

G
(
X0, f1, f2, . . . , fK ; T

)

+
(

1− 1
f1

)
G

(
X0, 0, f2, f3, . . . , fK ; T

)

−G
(
X0, 0, 0, . . . , 0; T ). (14)

In this case, G is not normalized any longer;
G(1, 1, . . . , 1; T ) is now the probability that search has
not stopped after assignment of T variables. One could
also impose that the algorithm comes to a halt as soon as
a contradiction is detected i.e. when C0 gets larger than
or equal to unity. This requirement is dealt with by set-
ting X0 to 0 in the evolution equation for G (11), or (14).
All probabilities are now conditioned to the absence of
0-clauses, and, again, G is not normalized.

For the more complicated heuristic GUC (without
stopping condition), the recurrence relation reads

G(X ; T + 1 ) =
1
f1

G
(
X0, f1, f2, . . . , fK ; T

)

+
(

1
f2
− 1

f1

)
G

(
X0, 0, f2, f3, . . . , fK ; T

)

+
(

1
f3
− 1

f2

)
G

(
X0, 0, 0, f3, . . . , fK ; T

)

+ . . . +
(

1
fK
− 1

fK−1

)
G

(
X0, 0, 0, . . . , 0, fK ; T

)
. (15)

The above recurrence relations (11), (14), (15)... will be
useful in Section 3.4 to derive the distribution of unit-
clauses. As far as j-clauses are concerned with j ≥ 2, we
shall see in Section 3.3 that, thanks to self-averageness in
the large N limit, it is sufficient to know their expecta-
tion values, 〈Cj〉(T ). The average number of j-clauses is
the derivative, evaluated at the point X0 = X1 = . . . =
XK = 1, of the generating function G with respect to Xj :
〈Cj〉(T ) = ∂Xj ln G(1, 1, . . . , 1; T )6. Evaluating the deriva-
tive at another point is used to take conditional aver-
age: for instance, the average of C1 conditioned to the
absence of 0-clauses is 〈C1〉(T ) = ∂X1 ln G(0, 1, . . . , 1; T )
(here, G(0, 1, 1, . . . , 1; T ) may be less than 1 as we have
seen). Taking derivatives with respect to more than one Xj

would give information about correlation functions and/or
higher order moments of the Cj ’s.

6 The logarithm plays no role when G is normalized, i.e.
G(1, 1, . . . , 1; T ) = 1.

For evolution equation (11), the system of evolution
equations for the 〈Cj〉(T )’s is triangular:

〈Cj〉(T + 1)− 〈Cj〉(T ) = − j

N − T
〈Cj〉(T )

+
1
2

j + 1
N − T

〈Cj+1〉(T ) if 2 ≤ j ≤ K (16)

〈C1〉(T + 1)− 〈C1〉(T ) = − 1
N − T

〈C1〉(T )

+
1

N − T
〈C2〉(T ) +

(
1− 1

N − T

) (
〈δC1,0〉(T )− 1

)
(17)

〈C0〉(T + 1)− 〈C0〉(T ) =
1

2(N − T )

(
〈C1〉(T )− 1 + 〈δC1,0〉(T )

)

=
1

2(N − T )
〈max(C1 − 1, 0)〉(T ) (18)

(with CK+1 := 0) and it can be solved analytically, start-
ing from 〈CK〉(T ) down to 〈C2〉(T ), with the initial condi-
tion Cj(0) = αNδj,K (α is the initial clauses-per-variables
ratio). However, the equations for 〈C1〉(T ) and 〈C0〉(T )
involve more information than the averages of the Cj ’s,
namely the probability that there is no 1-clauses, and they
can’t be solved directly: we shall study the full probability
distribution of C1 in the sequel, in order to extract the fi-
nally useful information, that is the probability 〈δC0,0〉(T )
that the search process doesn’t fail (doesn’t detect any
0-clause or contradiction) up to step T of the algorithm.

Before going on, let us point out that at least
two strategies are at hand to compute this finally use-
ful quantity. We just explained one: we set X0 = X1 = 1
in G, compute the averages of the Cj ’s (j ≥ 2) (these
stochastic variables turn out to self-average in this case
where C0 and C1 are free — see below), compute the
full distribution of C0 and C1 conditioned to the aver-
ages of the Cj ’s (j ≥ 2), and finally extract the prob-
ability that C0 vanishes up to time T . The other one
starts with noticing that this last probability is nothing
other than G(0, 1, 1, . . . , 1; T ): thus, it seems more natu-
ral to compute it through studying the generating function
G(0, X1, X2, . . . , XK ; T ) with X0 set to 0, i.e. to condition
all probabilities and averages on the success of the search,
or equivalently to require the process to stop as soon as a
contradiction appears. But this would prevent us to solve
the evolution equations for the 〈Cj〉(T )’s and would finally
lead to more complication: indeed, in such a case, since G
is not normalized, the quantity G(0, 1, 1, . . . , 1; T ), that
expresses the probability that no contradiction is found,
and that can’t be expressed without information about C1,
appears in every equation — or, put in another way, there
are correlations between all Cj ’s and C1. Therefore, we
prefer to take the seemingly less direct first route and
study from now on only the simplest kinetics (11), with
UC heuristic and no stop condition.

Another way of circumventing this problem could be
to do a kind of coarse-graining by grouping steps of
the algorithm where 1-clauses are present (and the Unit
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Propagation principle is used) into so-called rounds [15,
21], and then do as if the rounds where the elementary
steps: at the end of each step, C1 is always vanishing, so
that one needs to keep track only of the Cj ’s, j ≥ 2, in
the coarse-grained process.

3.3 On the self-averageness of clause numbers
and resolution trajectories

Is the knowledge of the sole averages 〈Cj〉(T ) enough, at
least for 2 ≤ j ≤ K, to compute the success probability of
the search process? The answer is yes, in a large range of
situations, because the Cj ’s are self-averaging (for j ≥ 2).

It may be shown rigorously [6], using Wormald’s the-
orem [22], that, with the kinetics defined above and no
constraints on the Cj ’s (i.e. with all Xj set to 1), C2, C3,
..., CK are self-averaging in the T, N → +∞ with fixed
t := T/N limit in such a way that we can approximate
them by continuous functions of the reduced parameter
t ∈ [0, 1]:

Cj(T ) = Ncj(t) + o(N − T ), 2 ≤ j ≤ K (19)

where o(N − T ) is actually an asymptotically Gaussian
fluctuation term, i.e. a stochastic variable with aver-
age O(1) and standard deviation O(

√
N − T ) (N − T

is the number of not-yet-assigned variables). The self-
averageness of the Cj ’s is a consequence of the concen-
tration of their variations [6]: given C(T ), the variation
terms ∆Cj := Cj(T + 1)−Cj(T ) for j ≥ 2, equation (16)
are concentrated around constant averages, and these av-
erages 〈∆Cj〉 may be approximated by continuous func-
tions gj(C2/(N−T ), C3/(N−T ), . . . , CK/(N−T ), t) with
errors o(1). However, the δ term in equation (17) and the
max term in equation (18) are not smooth and prevent
the existence of continuous functions g1 and g0. This has
deep consequences, since the distribution of C1 is found to
be broad (in the large N limit, the standard deviation is
not negligible w.r.t. the average, but of the same order of
magnitude). We conclude as in previous subsection that
we shall be obliged to study the full distribution of C1

and C0.
Equation (19) ensures that we can safely replace the

values of the Cj ’s, j ≥ 2, with their averages in the
large N, T limits. Let E(T ) be a probabilistic event at
step T , such as: ‘the search detects no contradiction up to
step T ’. We divide the space C2(T ′), C3(T ′), . . . , CK(T ′),
0 ≤ T ′ ≤ T into a tube C centered on the average trajec-
tory 〈C2〉(T ′), . . . , 〈CK〉(T ′) and into its exterior C̄. The
probability of E(T ) then reads:

E[E(T )] = E[E(T ) ∩ C] + E[E(T ) ∩ C̄] (20)

and we shall choose the size of C so that the second term
is negligible with respect to the first one, i.e. to the prob-
ability of E(T ) conditioned to the Cj ’s lying close to their
averages at all times 0 ≤ T ′ ≤ T .

Fix 2 ≤ j ≤ K and 1/2 < δ < 1. At time
0 ≤ T ′ ≤ T , if the asymptotic standard deviation of

Cj(T ′) is σj(T ′)
√

N − T , the probability that the dis-
crete stochastic variable Cj(T ′) lies away from its av-
erage by more than σj(T ′)(N − T )δ, or equivalently
that the (asymptotically) continuous stochastic variable
Cj(T ′)/[σj(T ′)

√
N − T ] lies away from its average by

more than (N − T )δ−1/2, is

∆(T ′) := 2
∫ +∞

(N−T )δ−1/2

dx√
2π

e−
x2
2

=
2√

2π(N − T )δ−1/2
e−(N−T )2δ−1/2

+O
[

e−(N−T )2δ−1/2

(N − T )3δ−3/2

]
. (21)

Although the value of σj(T ′) depends on T ′, it varies only
smoothly with the reduced parameter t = T/N and it
makes sense to use a single exponent δ to define the re-
gion C. The probability that Cj(T ′) stays close to the av-
erage trajectory up to σj(T ′)(N − T )δ from T ′ = 0 to T
is then

∆ :=
T∏

T ′=0

(1−∆(T ′)) = 1−O
(
N3/2−δe−N2δ−1/2

)
. (22)

Generalizing this to the parallelepipedic region C with
boundaries such that each Cj(T ′), 2 ≤ j ≤ K, is always
at the distance at most σj(T ′)(N − T )δ from its average,
we find that the measure of C is

E[C] = (1−∆)K−1 = 1−O
(
N3/2−δe−N2δ−1/2

)
(23)

and the complementary measure is E[C̄] = 1−E[C] so that

E[E(T )] = E[E(T ) ∩ C] +O
(
N3/2−δe−N2δ−1/2

)
(24)

where the second term vanishes as N gets large, as we
wished.

Finally, let us draw the scheme of the computations to
follow: any trajectory of C2(T ), . . . , CK(T ) inside C brings
a contribution to E[E(T ) ∩ C] that lies close to the con-
ditional average E[E(T )|C2(T ) = Nc2(t), . . . , CK(T ) =
NcK(t)] by an relative error at most O(N ζ) in any
direction (+C2,−C2, . . .), ζ being computed later, to-
gether with the conditional average (it depends presum-
ably on δ). Thus, we can approximate the total contribu-
tion E[E(T ) ∩ C] with
[
1−O

(
N3/2−δe−N2δ−1/2

)]
× E[E(T )|C2(T ) = Nc2(t), . . . , CK(T ) = NcK(t)]

× [
1 +O (

N ζ
)]

(25)

to get

E[E(T )] =
E [E(T )|C2(T ) = Nc2(t), . . . , CK(T ) = NcK(t)]

× [
1 +O (

N ζ
)]

+O
(
N3/2−δe−N2δ−1/2

)
(26)
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where we shall have to ensure (by a proper choice of δ
if possible) that the neglected terms are indeed negligi-
ble with respect to the computed conditional expectation
value: if δ is too large, the weight of the region C̄ is very
small, but we allow deviations from the average and typ-
ical trajectory inside the (too loose) region C that may
bring contributions substantially different from the typi-
cal one. Conversely, if we group into C near the typical
trajectory only the most faithful trajectories, we have a
good control over the main contribution, but the weight
of the ‘treaters’ in C̄ may not be negligible any more.

The self-averaging of C1 and C0 (or its lack) has con-
sequences that may be observed numerically. Let us study
the distribution over instances of the probability P that
the UC = UP + R greedy, randomized algorithm detects
no contradiction during its run. That is, for each of the
≈4000 instances that we draw at random, we do 104 to
105 runs of the algorithm (with different random choices of
the algorithm) and we estimate the probability of success
of the algorithm on this instance7.

The cumulative distribution function of P is plotted
in Figure 2 for instances of 3-SAT with initial clauses-per-
variable ratio α = 2 (left curves) and 8/3 (right curves),
for sizes of problems N = 1000 and 10 000. For each size
N , P is rescaled to fix the average to 0 and the standard
deviation to 1/

√
2. For α < 8/3, C1 has finite average

and standard deviation when N → +∞, and ∆C1 may be
approximated by a continuous function g1 like the ∆Cj ’s
for j ≥ 2 (see Sect. 4.1). The numerical distributions of P
are successfully compared to a Gaussian distribution (the
average of P for α < 8/3 is computed in Sect. 4.1, see
Eq. (48)). For α = 8/3, things are different. C1 has av-
erage and standard deviation of the order of N1/3 (see
Sect. 4.2 and following). As for α = 2, the width of the
finite-size distributions of P vanishes with N — they con-
centrate about their average (computed in Sect. 6, see
Eq. (123)), and the rescaled finite-size distributions of P
are numerically seen to converge to a well-defined distri-
bution. However, this distribution is not Gaussian — this
effect seems rather small, but significant.

If we now plug the self-averaged form (19) of the Cj ’s,
j ≥ 2, in their evolution equations (16), we get, using the
reduced parameter t = T/N ,

dcj

dt
= − j

1− t
cj(t) +

j + 1
2(1− t)

cj+1(t) 2 ≤ j ≤ K

(27)
with cK+1 := 0. This triangular system of equations, with
the initial conditions cj(0) = αδj,K , is easily solved for
given K. For instance, for 2 + p-SAT and the R heuristic,

7 Alternatively, we could get the same result by doing one
run of the algorithm on each instance (and averaging over many
more instances) since the sequence b of choices of the algorithm
on the instance A is the same as the sequence a of choices
of the algorithm on an instance B obtained by relabeling the
variables and the clauses of instance A. However, this technique
was slower in practice because much time is spent building new
instances.

Fig. 2. Numerical estimates for the cumulative probability
distributions of the probability P of success of the UC=R+UP
algorithm on random 3-SAT instances with sizes N = 103

(dots) and 104 (dashes) and initial clauses-per-variable ratios
α = 2 (left) and 8/3 (right). The P -axis for each distribution
(each value of α and N) is chosen so that the rescaled distribu-
tions have average 0 and standard deviation 1/

√
2. The solid

lines show the Gaussian cumulative distribution [1+ erf(x)]/2.
For α = 2, numerical distribution are in good agreement with
a Gaussian shape, but not for the critical ratio α = 8/3.

the solution reads

c3(t) = αp(1− t)3 (28)
c2(t) = α(3pt/2 + 1− p)(1 − t)2 (29)

whereas, for 2 + p-SAT and the GUC heuristic,

c3(t) = αp(1− t)3 (30)
c2(t) = (1− t) {ln(1− t) + α[3pt(2− t)/4 + (1− p)]} .

(31)

For K-SAT with the R heuristics with initial ratios αj =
Cj/N ,

c2(t) = (1− t)2
K∑

j=2

αjj(j − 1)21−jtj−2. (32)

The parametric curve [c2(t), c3(t), . . . , cK(t)], 0 ≤ t ≤ 1,
will be called resolution trajectory. It describes, forgetting
about 0- and 1-clauses, the typical evolution of the re-
duced formula under the operation of the algorithm. In
the case of 3- or 2 + p-SAT, a useful alternative phase
space is the p × α plane, where α = (c2 + c3)/(1 − t) is
the (instantaneous) 2-or-3-clauses-per-variable ratio and
p is, as usual, the proportion of 3-clauses amongst the
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Fig. 3. Some resolution trajectories of the UC=UP+R al-
gorithm. If the trajectory of some algorithm stays strictly be-
low the d2 = α(1 − p) = 1 line (long-dashed line), 1-clauses
don’t accumulate and the success probability Psuccess of the
algorithm is finite as N → +∞ (solid trajectories). Critical
behaviour is when the trajectory gets tangent to this line or
starts on it (short-dashed trajectories). When the trajectory
spends time in the region above this line (dotted trajectory),
Psuccess gets exponentially small in N . Inset: the singular be-
haviour of Psuccess around the (p = 2/5, α = 5/3) point is
better understood if one uses local coordinates (x, y). x is the
distance along the common tangent to the d2 = 1 line and
the critical trajectory. y is such that lines of constant y are,
in the original coordinates, parabolas, tangent to the d2 = 1
line. The point (2/5, 5/3) is spread onto the waved line. Left
and right limits of Psuccess for x → 0 on the waved line are
well-defined but distinct. The N → +∞ limit of − ln Psuccess

has the indicated singularities on the thick lines.

2- and 3-clauses. Some resolution trajectories of the UC
algorithm are shown in Figure 3. They all end at the
c1 = c2 = c3 = 0 point with t = 1: almost all variables
have to be assigned before no clauses are left (and a so-
lution is found). More clever algorithms such as GUC are
able to find solutions with a finite fraction of remaining
unset variables, and give a family of solutions with a finite
entropy at once.

3.4 Reduced generating functions for 0- and 1-clause
numbers

From now on, we identify C2, C3, . . . , CK with their
asymptotic averages NCj(t) as discussed above, and study
the kinetics of C0 and C1 as driven by C2, C3, . . . , CK .
Under these assumptions, it is easy to write the evolu-
tion equation for C0 and C1 that corresponds to (7): if
P (C0, C1; T |C2) is the probability that the search pro-

cess leads, after T assignments and with imposed values
of C2, C3, . . . CK at all steps 0 to N , to the numbers C0,
C1 of 0-, 1-clauses,

P (C′
0, C

′
1; T + 1|C2) =∑

C0

∑
C1

M1[C′
0, C

′
1 ← C0, C1; T |C2] P (C0, C1; T |C2)

(33)

where the expression of M1 is deduced from that of M by
canceling all what it written on the left of the sum over z2

in (9). It is readily seen in that expression that, actually,
the transition matrix M1 doesn’t depend explicitly on C3,
C4, . . . , CK but only on C2; therefore, we dropped the
unnecessary dependence in the above equation. M1 also
depends explicitly on time through µ = 1/(N − T ). This
evolution equation translates into the following equation
for the generating function

G01(X0, X1; T |C2) :=
M∑

C0=0

M∑
C1=0

XC0
0 XC1

1 P (C0, C1; T |C2) :

G01(X0, X1; T + 1|C2) =
(

1 +
X1 − 1
N − T

)C2(α,T )

×
[

1
f1

G01(X0, f1; T |C2) +
(

1− 1
f1

)
G01(X0, 0; T |C2)

]

(34)

where f1 = 1+X0
2(N−T ) +X1(1− 1

N−T ), see (12). Since the X0

argument of G01 is the same in all terms, we shall drop
it when there is no ambiguity and use the lighter nota-
tion G1(X1; T |C2) := G01(X0, X1; T |C2). The key equa-
tion above yields the main results of the next sections:
in particular, G01(0, 1; T |C2) is the probability that the
search process detected no contradictions (i.e. produced no
0-clauses, even if there are already contradictory 1-clauses
such as ‘a’ and ‘a’) while assigning the first T variables,
and G01(0, 1; T = N |C2) is the probability that a solution
has been found by the search process, i.e. that all N vari-
ables were assigned without production of a contradiction
(if all variables were assigned, any produced contradiction
was necessarily detected).

4 The probability of success

In this section, the generating function formalism is used
to study the probability Psuccess(α, p, N) that UC success-
fully finds a solution to a random instance of the 2 + p-
SAT problem with N variables and αN clauses. We first
consider the infinite size limit, denoted by Psuccess(α, p).
As explained in Section 2.3, the probability of success
vanishes everywhere but for ratios smaller than a criti-
cal value αR(p). This threshold line is re-derived, with a
special emphasis on the critical behaviour of Psuccess when
α→ αR(p).
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We then turn to the critical behaviour at large but
finite N , with the aim of making precise the scaling of
Psuccess(α, p, N) with N . A detailed analysis of the be-
haviour of the terms appearing in the evolution equation
for the generating functions G (34) is performed. We show
that the resulting scalings are largely common to all algo-
rithms that use the Unit Propagation rule.

4.1 The infinite size limit, and the success regime

For a sufficiently low initial clauses-per-variables ratio α,
the algorithm finds a solution with positive probability
when N →∞. It is natural to look for a solution of equa-
tion (34) with the following scaling:

G1(X1, T = tN |C2) = π0(X1, t) + o(1) (35)

when T, N → +∞, π0 being a smooth function of X1

and t (X0 is kept fixed to 0). π0(1, t) is therefore, in the
N → +∞ limit, the probability that the search process
detected no contradiction after a fraction t of the variable
has been assigned. The probability of success we seek for
is Psuccess = π0(1, 1).

We furthermore know that C2, which drives the evolu-
tion of C1 in (34), is concentrated around its average: we
take

C2(α, T = tN) = (N − T )d2(α, t) +O [
(N − T )δ

]
(36)

with
d2(t) := c2(t)/(1− t) (37)

and 1/2 < δ < 1 will be chosen later. Inserting the above
Ansätze into (34) yields

π0(X1, t) =
e(X1−1)d2(t)

X1
[π0(X1, t) + (X1 − 1) π0(0, t)]

+O [
(1−X1)(N − T )δ−1

]
+O [

(N − T )−1
]

(38)

hence, in the thermodynamic limit N, T → +∞, an equa-
tion for π0,

π0(X1, t) =
e(X1−1)d2(t)

X1
[π0(X1, t) + (X1 − 1) π0(0, t)] .

(39)
This equation does not suffice by itself to compute π0(1, t).
Yet it yields two interesting results if we differentiate it
w.r.t. X1 to the first and second orders in X1 = 1:

π0(0, t) =
(
1− d2(t)

)
π0(1, t) (40)

∂π0

∂X1
(1, t) =

d2(t)
(
2− d2(t)

)
2
(
1− d2(t)

) π0(1, t). (41)

Under assumption (35), π0(0, t)/π0(1, t) = 1 − d2(t) can
be interpreted as the probability ρ1(t) that there is no
1-clause at time t conditioned to the survival of the search
process. d2(t) is then the (conditional) probability that
there is at least one 1-clause8. As ρ1(t) has to be posi-
tive or null, d2(t) cannot be larger than 1. As long as this

8 And the δ term that appears in equation (17) is actually a
continuous function of C2/(N −T ) so that equation (19) holds
also for j = 1.

is ensured, ρ1(t) has a well-defined and positive limit in
the N → +∞ limit (at fixed reduced time t). The condi-
tional average of C1, ∂X1π0(1, t)/π0(1, t), can be expressed
from (41) and is of the order of one when N → +∞. The
terms of the r.h.s. of (17) compensate each other: 1-clauses
are produced from 2-clauses slower than they are elimi-
nated, and do not accumulate. Conversely, in the failure
regime (Sect. 2.3), 1-clauses accumulate, and cause con-
tradictions.

To complete the computation of π0(1, t), we consider
higher orders in the large N expansion of G1. In gen-
eral, this would involve the cumbersome fluctuation term
O [

(X1 − 1)(N − T )δ−1
]
, but, at X1 = 1, only the ‘deter-

ministic’ O [
(N − T )−1

]
correction is left since C2 disap-

pears from equation (34). Thus we assume

G1(1, T = tN |C2)

= π0(1, t) +
1

N − T
π1(1, t) + o

(
1

N − T

)
(42)

which yields, when inserted into (34),

−(1− t)
∂π0

∂t
(1, t) =

1
2

[
∂π0

∂X1
(1, t) + π0(0, t)− π0(1, t)

]
.

(43)
This equation (43) can be turned into an ordinary differ-
ential equation for π0(1, t) using (40) and (41); after inte-
grating over t, with the initial condition π(1, t = 0) = 1
i.e. no contradiction can arise prior to any variable setting,
we find the central result of this section [8,13]:

π0(1, t) = exp
(
−

∫ t

0

dτ

4(1− τ)
d2(τ)2

1− d2(τ)

)
(44)

which is finite if, and only if, d2(τ) < 1 for all 0 ≤ τ ≤ 1
(the apparent divergence at τ = 1 is in practice compen-
sated by the factors involving d2).

The above result can be used in (40) and (39) to com-
pute π0(X1, t), that is the generating function of the prob-
ability P (C1, t) that there are C1 1-clauses and no contra-
diction has occurred after assignment of a fraction t of the
variables,

π0(X1, t) :=
∑

C1≥0

P (C1, t) XC1
1

=[1− d2(t)]
1−X1

1−X1e−(X1−1)d2(t)
π0(1, t).

(45)

As long as d2(t) < 1, the average number of 1-clauses
〈C1〉(t) is finite as N → +∞. This sheds light on the finite-
ness of Psuccess. The probability of not detecting a contra-
diction at the time step T → T+1 is (1−µ/2)max(C1−1,0) �
1−max(C1− 1, 0)/2/(N −T ), and Psuccess is the product
of Θ(N) quantities of that order9.

9 We can’t go further and compute a function π1(X1, t) cor-
responding to the order 1/N in (35), since the ‘Gaussian fluc-
tuations’ term O [

(N − T )δ
]

in (36) would dominate the 1/N
introduced correction — only for X1 = 1 is this 1/N-term rel-
evant, so that we could write down (43). It is also impossible
to compute π1(1, t) alone.



C. Deroulers and R. Monasson: Criticality and universality in the unit-propagation search rule 349

The validity condition d2(t) = c2(t)/(1 − t) < 1 is
fulfilled at all steps t if, and only if, the initial clauses-
per-variable ratio α is smaller than a threshold, αR, as
can be seen from the expression of c2(t) = 〈C2〉(T )/N
that results from equation (29). Graphically, in the (p, α)
plane, the resolution trajectory in Figure 3 stays below
the line α(1 − p) = 1 iff. α is small enough. Finding the
threshold value for α and a given p is an easy ballistic
problem:

– If p < 2/5 (‘2-SAT family’), whatever the ini-
tial clauses-per-variable α, the resolution trajectory
(Fig. 3) will always either be entirely below the d2 = 1
line (success case, low α), or cut it (failure case,
high α). The threshold value of α is reached when the
resolution trajectory starts exactly on it (critical case),
therefore

αR(p) = 1/(1− p) if p < 2/5. (46)

– If p ≥ 2/5 (‘3-SAT class’), the resolution trajectory
for low α is also entirely below the d2 = 1 line (suc-
cess case). This situation ends when the resolution tra-
jectory gets tangent to the d2 = 1 line, whereas for
p < 2/5 it was secant.
All critical trajectories for p ≥ 2/5 share the support of
the critical trajectory for p = 1 (3-SAT) that starts at
(p = 1, α = 8/3), and all become tangent to the d2 = 1
line at the (p = 2/5, α = 5/3) point (reached after
a finite time), whereas for p < 2/5 there are several
critical trajectories. Here,

αR(p) = 24p/(2 + p)2 if p ≥ 2/5. (47)

The probability Psuccess = π0(1, 1) that the UC algo-
rithm finds a solution is obtained from equation (44) with
d2(t) = α(1− t)(3/2pt + 1− p), equation (29):

− ln Psuccess(α, p) =
1

4
√

24p/(2 + p)2/α− 1

×
[
arctan

1√
24p/(2 + p)2/α− 1

+arctan
5(p− 2/5)

(2 + p)
√

24p/(2 + p)2/α− 1

]

− 1
8

ln
(

1
1− p

− α

)
− 1

8
ln(1− p) +

α(p− 4)
16

. (48)

Of particular interest is the singularity of Psuccess slightly
below the threshold ratio. At fixed p, as α increases, the
first singularity is encountered when the resolution tra-
jectory tangent to the d2 = 1 line is crossed i.e. for
α = 24p/(2 + p)2 (Fig. 3, largest short-dashed line, and
thick short-dashed line in the inset). If p > 2/5 (3-SAT
class), the two arctan in equation (48) tend to π/2 and
Psuccess vanishes as (ε < 0):

− lnPsuccess [(1 + ε)αR(p), p] =
π

4
1√−ε

+ Θ(1). (49)

For p = 2/5, one of the two arctan vanishes for all α, and
the first ln brings another singularity (ε < 0):

− ln Psuccess

[
5
3
(1 + ε),

2
5

]
=

π

8
1√−ε
− 1

8
ln(−ε) + Θ(1).

(50)
And for p < 2/5, the two arctan have opposite signs
so that the first term of equation (48) has no singu-
larity while crossing the ‘limiting’ resolution trajectory
α = 24p/(2 + p)2 (thin short-dashed line of the inset of
Fig. 3). A singularity is found when α reaches the d2 = 1
line, α = 1/(1 − p) (thick long-dashed line of the inset of
Fig. 3), with the outcome (ε < 0)

− lnPsuccess [(1 + ε)αR(p), p ] = − 1− p

2(2− 5p)
ln(−ε)+Θ(1).

(51)
The difference of nature of the singularities between the
2-SAT and 3-SAT families corresponds to different diver-
gences of − ln Psuccess with N , as will be computed in the
next section.

For completeness, let us check that the above calcu-
lation is compatible with our approximation (26). The
first term of the l.h.s. there is equal to Psuccess plus the
1/(N−T ) correction from equation (42). The second term
there, in O(N ζ), corresponds here to the fluctuations of
C2: O(N δ−1) in equation (38), thus ζ = δ − 1. If we take
for δ any value on the allowed interval ]1/2, 1[, the two ap-
proximation terms in (26) vanish as N → +∞. Therefore,
as long as Psuccess is finite for large N , these approxima-
tion terms are actually negligible.

4.2 Large N scalings in the critical regime

Our previous study of the success regime breaks down
when d2(t) reaches 1 during operation of the algorithm.
Indeed, consider the infinite-N generating function for C1,
G1, given by equation (45). As a function of X1, G1 van-
ishes uniformly on any compact interval [0, 1−η], η > 0, as
d2 → 1. The X1 = 1 point is singular since normalization
enforces π0(1, t) = 1 (assuming X0 = 1): all useful infor-
mation is concentrated in a small region around X1 = 1.
Expanding equation (45) for X1 → 1 yields

π0(X1, t) =
{

1 + d2(t)
1−X1

1− d2(t)
− X1d

2
2(t)

2
1−X1

1− d2(t)

+O
[
(1−X1)2

1− d2(t)

]}−1

. (52)

Non-trivial results are obtained when 1−X1 and 1−d2(t)
are of the same (vanishingly small) order of magnitude —
let us call it ∆. We suspect that ∆ is some negative power
of N , to be determined below. Let us define

X1 =: 1− x1∆, e2(t) := ∆−1(1− d2(t)) (53)

so that equation (36) now reads

C2[α, T = tN ] = [1− e2(α, t)∆](N − T ) +O [
(N − T )δ

]
(54)
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where, as previously, the exponent δ will be tuned later
according to the framework equation (26).

We assume that, in the thermodynamic limit N →
∞, ∆→ 0 but at fixed x1, e2(t), and time t, the normalized
generating function of C1 conditioned to the typical value
of C2(t),

G1(X1 = 1− x1∆, T = tN |C2)
G1(1, T = tN |C2)

−−−−→
N→+∞

π(x1, t) (55)

where the limit π is a smooth function of x1 and t (which
also depends on X0 and e0). π(x1, t) is the generating func-
tion for the stochastic variable c := C1/∆, conditioned
to the success of the algorithm. Equation (52) gives in-
formation about the e2 → +∞ limit of π. Furthermore,
equation (45) shows that

∆−1G1(0, T |C2)/G1(1, T |C2) −−−−→
N→+∞

σ(t), (56)

a well defined limit of the order of unity for T = tN
and C2 given by equation (54). We now plug the previ-
ous conventions and assumption into the evolution equa-
tion for the conditional, normalized generating function
of C1. This equation is formed by dividing equation (34)
by G1(1, T |C2), which yields, in a formal way,

LHS = RHS1 + RHS2 (57)

LHS := G1(X1, T + 1|C2)/G1(1, T |C2)

RHS1 :=
(

1 +
X1 − 1
N − T

)C2(α,T ) 1
f1

G1(f1; T |C2)
G1(1, T |C2)

RHS2 :=
(

1 +
X1 − 1
N − T

)C2(α,T ) (
1− 1

f1

)
G1(0; T |C2)
G1(1, T |C2)

.

From this equation we get, in the following subsections,
all results relevant to the critical behaviour of the success
probability of the greedy algorithm.

4.2.1 Analysis of the RHS terms

The two contributions of the r.h.s. of the evolution equa-
tion (57) have the detailed expression (for X0 = 0):

RHS1 =
{

1 + x1e2(t)∆2 +
1

2N(1− t)
+

x2
1

2
∆2

+O((x3
1 + x2

1e2(t))∆3) +O
(

x1
∆

N(1− t)

)

+O [
x1∆(N − T )δ−1

] }

×
{

π(x1, t) +
1

2N(1− t)∆
∂x1π(x1, t)

+O [
(N − T )−2∆−2

] }
(58)

and

RHS2 = −σ(t)∆
{

x1∆ +
1

2N(1− t)
+O

(
x1∆

N(1− t)

)

+O(x3
1∆

3) +O [
(N − T )−2

]
+O {

x2
1∆

2(N − T )δ−1
]}

where, as usual, T = tN .
Apart from the dominant term π(x1, t) that cancels

with the dominant term of the l.h.s., the first terms have
order ∆2 and 1/(N∆) (we here assume that t < 1 in the
critical regime, which will be the case in all subsequent
situations). Then, ∆3, 1/N , ∆/N and so on are negligible
for large N (because ∆ vanishes, but slower than 1/(N −
T ) since the integer C2 may not vary by less than unity).
So do the terms stemming from fluctuations of C2 around
its typical value, ∆2(N − T )δ−1 and ∆(N − T )δ−1, if we
choose δ carefully (see below). Choosing ∆ such that ∆2 =
1/(N∆) allows us to gather a maximal number of terms in
the equation for π. Other choices are possible but trivial,
in that they would correspond to either the success or the
failure regimes, but not to the critical case. From now on,
∆ := N−1/3.

Then, the fluctuations of C2 in the above expansion are
of the order of ∆(N−T )δ−1 = (N−T )δ−4/3. Using the no-
tations from equation (26), ζ = δ−4/3. These fluctuations
are negligible with respect to N2/3 if δ < 2/3. Remember
that the range of possible values for δ was ]1/2, 1[; in the
critical situation here, we may choose δ ∈]1/2, 2/3[. It will
be checked later that the third term of the l.h.s. of equa-
tion (26) is also negligible w.r.t. the first one. Finally,

RHS1 + RHS2 = π(x1, t) + N−2/3

×
[

1
2(1− t)

∂x1π(x1, t) +
(
e2(t) x1 +

x2
1

2
)
π(x1, t)

− σ(t)x1

]
+O

[
(N − T )−1, x1(N − T )δ−4/3

]
. (59)

4.2.2 Analysis of the LHS terms

LHS in equation (57) has to do with time evolution. The
values of d2 or e2 are given by the average value of C2

calculated in Section 3.3. e2 is of the order of unity when
N → +∞ if the resolution trajectory comes close to d2 = 1
i.e. if the initial clauses-per-variable ratio α is close to its
threshold value equations (46 - 47). We zoom in around
the time, say, t∗ where d2 is closest to 1 (or equal to 1 if
we are exactly on the borderline between the success and
failure cases) and let

T = t∗ N + t0N∆a = t∗ N + t0N
1−a/3 . (60)

a will be fixed later for each family of near-critical trajec-
tories so that 1 − d2(t) is indeed of order ∆ on a finite
interval of rescaled times t0. We now assume that π and
G1(X1 = 1) have, when N → ∞ and time T is given
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by (60), well defined limits, regular w.r.t. t0
10. The l.h.s.

of equation (57) may be written for large N

LHS = G1(1, T + 1|C2)/G1(1, T |C2) π(x1, T + 1) (61)

where T + 1 = t0 + N−1∆−a = t0 + N−1+a/3. As
time t0 goes on, the shape of the distribution of C1/∆
(encoded into π) and the probability of success (given by
G1(1, T |C2)) both vary. Fix first x1 at 0 so that X1 = 1
and π = 1, then equations (61) and (59) read

LHS = 1 + N−1+a/3∂t0 ln[G1(1, t0|C2)] (62)

RHS1 + RHS2 = 1 +
1

2(1− t)
N−2/3∂x1π(1, t)

+O [
(N − T )−1

]
. (63)

Comparing the two members, equation (62) and equa-
tion (63), of equation (57) shows that ln[G1(1, t0|C2)] is of
the order of N (1−a)/3, with subleading terms of the order
of N−a/3 at most. Defining λ := (1− a)/3, we have in the
large N limit

−N−λ ln G1(1, T |C2)→ µ(t0), (64)

a regular function of t0. Equations (62) and (59) with
x1 = 0 yield

∂t0µ(t0) = − 1
2(1− t∗)

∂x1π(0, t0). (65)

As π is the generating function of c = C1/∆ (conditioned
to success of the algorithm),

c(t0) := −∂x1π(0, t0) (66)

is the conditional average of the rescaled number c of unit-
clauses.

For general x1 now, the previous assumptions lead
from the expression (61) of the l.h.s. of equation (57) to

LHS = π(x1, t0) + N−1+a/3∂t0π(x1, t0)

−N−2/3π(x1, t0)∂t0µ(t0) +O(N−2+2a/3). (67)

4.3 Critical evolution equations

Comparing the two sides of the evolution equation, equa-
tion (59) and equation (67), we are left with two situa-
tions.
10 This assumption could presumably be demonstrated us-
ing the same technique as for Wormald’s theorem [22]. If
we introduce ex nihilo the functions π and G1 that sat-
isfy the equations (68)–(69), we could show that the dif-
ference between the sequences, for T from 1 to N , of
the discrete quantities G1(X1, T |C2) and of the approxi-
mate quantities π[(1 − X1)N1/3, (T − Nt∗)N−1+a/3] G1[1,
t0 = (T − Nt∗)N−1+a/3], vanishes when N → +∞. The rea-
son is that the difference between two consecutive terms of
each of the two sequences is the same up to a small quantity
that yields a negligible difference at the final date T = N , and
the initial conditions for both sequences are equal.

– If a = 1: λ = 0 and it is convenient to use the non-
normalized (non-conditional) generating function

π(x1, t0) := exp[−µ(t0)]π(x1, t0).

The total probability here, π(0, t0), is not 1 as for π
but the success probability of the greedy algorithm. π
satisfies the following PDE:

∂t0π(x1, t0) =
1

2(1− t∗)
∂x1π(x1, t0)

+
[
e2(t0)x1 +

x2
1

2

]
π(x1, t0)− σ(t0)x1. (68)

– If a < 1: the probability of success has the scaling
relationship Psuccess ∝ exp[−Θ(N (1−a)/3)]. The time-
derivative term ∂t0π(x1, t0) is negligible w.r.t. other
terms, and π satisfies the ODE:

0 =
1

2(1− t∗)
[∂x1π(x1, t0) + c(t0)π(x1, t0)]

+
[
e2(t0)x1 +

x2
1

2

]
π(x1, t0)− σ(t0)x1. (69)

The third possibility, a > 1, leads to inconsistencies and
has to be rejected11.

In the previous section, we classified the critical res-
olution trajectories into two families: those of the 2-SAT
family (p < 2/5) start from the d2 = 1 line but are secant
to it, and those of the 3-SAT family (p > 2/5) do not start
on this line but get tangent to it (‘parabola situation’).
As we will see in the next sections, these two families cor-
respond, respectively, to values of the exponent a equal
to 1 and 1/2, making successively equation (68) and (69)
relevant.

5 The 2-SAT class (power law class)

5.1 Equations for 2-SAT and its family

When p < 2/5, the critical resolution trajectory starts on
the d2 = 1 line and is secant to it (at time t∗ = 0) with
slope

β(p) :=
2− 5p

2(1− p)
. (70)

The threshold value of α is αR(p) = 1/(1− p) (Eq. (46)).
On this resolution trajectory, 1−d2(t−t∗) ∝ t−t∗. There-
fore, this resolution trajectory is at distance ∆ = N−1/3 of
the d2 = 1 line as long as t−t∗ is of order ∆1: the exponent
a equals 1 here and the relevant equation is equation (68).

11 We would have either subdominant terms of the order of
N−1+a/3, larger than the dominant term (of the order of 1)
π(x1, t0) if a ≥ 3, or the two equations ∂t0π(x1, t0) = 0 and an
ODE for π at fixed t0 but with coefficients e2(t0) and σ(t0).
In the latter case, since π would be constant with time, e2

and thus d2 should also be constant, which is impossible in the
context of our algorithm (see Eq. (27)).
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The critical regime is realized when α is close to the
value αR(p) = 1/(1− p).

The relevant scaling is

α = αR(p)(1 + εαN−1/3) (71)

with finite εα since, if α is less than αR(p) by more than
∆ = N−1/3, at the initial date t = 0, d2(0) is already out
of the critical region 1−∆ (remember that d2(t) decreases
with time if p < 2/5 as can be seen in Fig. 3). Conversely,
if α is above αR(p) by a distance much greater than ∆ at
time t = 0, 1−d2(0) is an order of magnitude higher than
the critical distance ∆ and an infinite duration, on the
scale of t2 in equation (60) with a = 1, is needed until this
critical distance is reached. Notice that the critical window
here coincides with the critical window of the static phase
transition for 2-SAT [17].

Finally, t∗ is such that d2(t) = 1, therefore

t∗ = εα/β(p)N−1/3 +O(N−2/3)

from equation (29), and the relevant scaling for time is

T = [t2 + εα/β(p)] N2/3 (72)

according to equation (60), where we replaced the nota-
tion t0 with t2 to emphasize that this scaling is proper to
the 2-SAT family.

We have to solve equation (68) with this choice of
scales and with proper initial and boundary conditions.
Define

pno−contr(→ t2) := π(x1 = 0, t2). (73)

This is the probability that the algorithm detects no con-
tradiction from T = 0 up to the (rescaled) time t2. We
shall send t2 → +∞ at the end. In the case of the
greedy UC algorithm, 1/[2(1 − t∗)] = 1/2 + O(N−1/3)
and e2(t2) = β(p)t2 + O(N−1/3), so that equation (68)
reads:

∂t2π(x1, t2) =
1
2
∂x1π(x1, t2)

+
[
β(p)t2x1 +

x2
1

2

]
π(x1, t2)− σ(t2)x1. (74)

In practice, we find it easier to perform an inverse Laplace
transform of equation (68) before solving it; this amounts
to work with probability density functions (PDFs) rather
than with generating functions. In particular, the difficulty
of computing σ that appears in equation (68) is turned
into a boundary condition on the PDF that is easier to
deal with.

If we plug the critical scaling of X1, equation (53), into
the definition of the generating function G1(X1) of C1:

G1(X1) :=
+∞∑

C1=0

XC1
1 P (C1)

=
+∞∑

C1=0

e−x1C1N−1/3+O(N−2/3)P (C1) (75)

and (in an heuristic way) change the discrete sum on C1

into an integral on c := C1N
−1/3, letting N go to +∞:

π(x1) =
∫ +∞

0

e−x1cρ(c) dc (76)

where ρ(c) is the probability density function (PDF) of c,
we see that π(x1) is the Laplace transform of ρ(c) with re-
spect to c. Here we have dropped the time dependence, but
ρ(c, t2) is actually a function of c and t2 and the Laplace
transform is taken at fixed time.

In terms of ρ(c, t2), equation (74) translates into

∂t2ρ(c, t2) =
1
2
∂2

c ρ(c, t2) + β(p) t2 ∂cρ(c, t2)− 1
2
c ρ(c, t2).

(77)
This inverse Laplace transform can be performed only if
the limit when x1 → +∞ of the r.h.s. of equation (74)
is zero. Writing from (76) the asymptotic expansion for
π(x1, t2) in terms of the density of clauses and its deriva-
tives at the origin c = 0,

π(x1, t2) = ρ(0, t2)/x1 + ∂cρ(0, t2)/x2
1 + o(1/x2

1) (78)

and plugging it into equation (74), we find that σ(t2) =
1/2 ρ(0, t2) and ρ(c, t2) satisfies the boundary condition:

1
2
∂cρ(0, t2) + β(p) t2 ρ(0, t2) = 0. (79)

Conversely, one verifies that equation (77) supplemented
with the boundary condition equation (79) leads by direct
Laplace transform to equation (74) where σ(t2) is replaced
with ρ(0, t2)/2.

Equation (77), supplemented with equation (79), is
a reaction-diffusion equation on the semi-infinite axis of
c = C1/(N − T )1/3 > 0. At the initial time step T = 0,
i.e. t2init = −εα/β(p), there are no 1-clauses, so that
π(x1, t2init) = 1 for all x1 and ρ(c, t2init) is a Dirac δ dis-
tribution centered on c = 0: the diffusing particles all sit
on the c = 0 point. Then, they start diffusing (second-
derivative term in Eq. (77)) because new 1-clauses are
produced randomly from 2-clauses when variables are as-
signed by the algorithm. This diffusion is biased: the drift
term ∂cρ(c, t2) comes from the tendency of the algorithm
to make 1-clauses disappear (to satisfy them). A picture
of this process may be found in the upper-right inset of
Figure 8, where the PDF ρ is shown after normalization.
The total number of particles is not conserved: the absorp-
tion term cρ(c, t2) results from the stopping of some runs
of the algorithm, those where a contradiction (a 0-clause)
is detected.

The probability that no contradiction has been en-
countered till time t2, pno−contr(→ t2) = π(0, t2) =∫ +∞

c=0 ρ(c, t2)dc, is a decreasing function of t2, smaller than
unity.

5.2 Results for 2-SAT and its family

Unfortunately, we were not able to solve analytically equa-
tion (77). Our study relies on an asymptotic expansion of
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the solution of this equation for large times t2 and on
a numerical resolution procedure to get results at finite
times t2. This numerical resolution was in turn helped
with an asymptotic expansion at small times t2.

Details about the large times t2 expansion may be
found in Appendix C. In short, we find that the proba-
bility that the greedy algorithm does not stop till time t2
decays algebraically at large times,

pno−contr(→ t2) =
∫ +∞

0

ρ(c, t2)dc ∝ t
− 1

4β

2 . (80)

The leading order of the probability of success at the final
time step T = N can be guessed by replacing t2 with N1/3:

Psuccess[αR(p), p] ∝ N− 1
12β , (81)

an intermediate behaviour between the success (finite
Psuccess) and failure (− ln Psuccess ∝ N) situations defined
in Section 2.3.

The proportionality factor in equation (81) can be cal-
culated through a numerical resolution of equation (77)
for finite values of t2.

5.2.1 Numerical resolution of equation (77) at finite
times t2

We have solved the reaction-diffusion-like equation (77)
thanks to a standard numerical resolution scheme (the
Crank-Nicholson method) after some preliminary steps.
First we discretized both time and ‘space’ (the semi-
infinite axis of c). It is convenient to consider finite-
support functions, and we have tried the changes of vari-
ables b = 1/(c+1) and b = exp(−c); the latter turned out
to be better. The range ]0, 1] for b was discretized into N
points. The Crank-Nicholson method allows us to take a
time step 1/N for the numerical resolution (quite efficient
as compared to the time step 1/N 2 for Euler’s method),
provided that the Courant condition is respected. With
equation (77) this is not the case, since the coefficient of
the drift term, β(p)t2, is not bounded with growing t2. We
actually consider ρ̃(c, t2) = exp(−βct2 − β2t32/6)ρ(c, t2)
rather than ρ(c, t2) so that the Courant condition is sat-
isfied. What we have to solve now is

∂t2 ρ̃(b, t2) =
b2

2
∂2

b ρ̃(b, t2) +
b

2
∂bρ̃(b, t2)

−
[
β(p)− 1−X0

2

]
ln(b)ρ̃(b, t2) (82)

with X0 = 0 and for 0 < b ≤ 1, and with the boundary
condition

∂bρ̃(1, t2)− β(p)t2ρ̃(1, t2) = 0. (83)

At initial time t2init = −εα/β(p), ρ(c, t2init) = δ(c).
The most relevant term in equation (77) is the diffu-
sion term, and we expect c to grow like

√
t2 − t2init typ-

ically12. Therefore, we start our numerical resolution at
12 See also equation (D.6).

Fig. 4. Numerical data for c(t2) in the case of critical 2-SAT
(β = 1 and εα = 0), obtained by numerically solving equa-
tion (77). Comparisons with the analytical small- and large-
times asymptotic expansions are shown.

time t2init +N−1/2 so that a finite number of discretiza-
tion points (instead of just the point on the b = 1 bound-
ary) share the support of ρ̃. The initial condition is given
by a short-time series expansion of the solution of equa-
tion (77). Details about this expansion are found in Ap-
pendix D.

We first tested our program by studying the linear
equation (77), or more precisely equation (82) with X0

set to 1. In this case, the distribution ρ is normalized to
unity. We observed that this conservation rule is fulfilled
by our numerical resolution scheme up to a small devia-
tion of order 1/N , diverging with the simulation time t2.
Therefore, we must be careful in our choice for the final
time of the simulation. Moreover, when we plotted the
conditional average c(t2), we found a very good agree-
ment with the analytical expansions at small and large
times t2. This agreement was also observed for the non-
linear equation (82) — see Figure 4. Therefore, we think
that our numerical results are quite reliable, at least on
finite time ranges.

5.2.2 Probability of success in the critical time regime
and the scaling function H

As the numerical precision on c(t2) is greater than on
the total probability 13, we have calculated the proba-
bility of success through the numerical results for c. The

13 For instance, in the case of X0 = 1, with N = 100 and
at t2 = 6.5, the relative error on the total probability equals
6.8%, whereas it is only 2.5% on c.
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probability π(0, t2) is indeed related to the values of c(t2)
by integrating equation (77) over c from 0 to +∞, see
equation (65):

∂t2 ln pno−contr(→ t2) = −c(t2)/2 (84)

where we have used the boundary condition equation (79).
In practice, we integrated c numerically from t2init (which
depends on p and εα) to t2 ≈ 5, and used our large-t2
expansion (see Eq. (80) and Appendix C) for t2 > 5, which
yields

− ln pno−contr(→ t2; εα, p) =
ln t2
4β(p)

+H [εα, β(p)]+O (
t−3
2

)
(85)

with the following values for H at criticality (εα = 0):
0.24371 ± 10−5 for p = 0, 0.24752 ± 10−5 for p = 1/7,
0.20157 ± 10−5 for p = 1/4, −0.208 ± 10−3 for p = 1/3.
These values are extrapolations to N = ∞ of numerical
results for a number of discretization points N up to 1600.
We checked that changing the end time of numerical inte-
gration from ≈5 to ≈10 did not change this extrapolation
(although it notably affects the numerical integral for val-
ues of N � 1000).

The behaviour of pno−contr in the critical time range is
illustrated in the inset of Figure 6 in the case of 2-SAT.
For N = +∞ (continuous line), equation (85) yields the
large-t2 asymptote while data for small t2 come from
numerical results for equation (77). This compares well
with results for finite sizes N from 25 to 1000 (points),
even though the finite-size effects in N−1/3 are large; for
fixed t2, finite-size data converge to the N = +∞ result
but, on a series of data for fixed N , there is a cross-over
from the time regime T = t2N

2/3 to the time regime
T = tN (where the correct scaling is illustrated in the
main plot). The finite-N data were computed by direct
solution of the evolution equation (34) for the generating
function G1 of C1, thanks to the technique exposed in Ap-
pendix E. They have no Monte-Carlo error but don’t take
into account the Gaussian fluctuations of c2.

H may be viewed as a scaling function of the param-
eter εα for the probability not to find a contradiction in
the time scale T = Θ(N2/3). We computed along the same
lines several values of H for various εα �= 0 at fixed p = 0.
Results are shown in Figure 5.

Let us check heuristically that the success and failure
cases are recovered from the critical results when εα tends
to −∞ and +∞ respectively; this amounts to precise the
large-εα behaviour of the scaling function H . εα fixes the
initial date t2init = −εα/β(p) in the time scale of t2 and
this in turn influences the value of H .

For α < αR(p) i.e. εα = −δN1/3 for some fixed
δ > 0, c(t2) reaches very quickly its asymptotic regime
for large t2: c(t2) ∼ 1/(2βt2), and we obtain

− ln pno−contr(t2init = δN1/3 → tN1/3) ≈∫ tN1/3

δ/βN1/3

dt2
4βt2

=
1
4β

(ln t− ln δ) . (86)

Fig. 5. Numerical results (dots) for the scaling function H of
the probability pno−contr in the critical time scale as a function
of the relative distance εα to the critical constraint-per-variable
ratio, in the case of 2-SAT (p = 0, β = 1). The error bars are
smaller than the symbol’s size. The dotted line is a guide for
the eye. Left inset: y := exp(−4H) is plotted vs. εα to show
that, when εα → −∞, H ∼ − ln(−εα)/4. The straight line has
equation y = −εα. Right inset: H1/3 is plotted vs. εα to show
that, when εα → +∞, H ∝ ε3α. The straight line is a tentative
linear fit.

pno−contr is finite, as expected in the success case. This
computation shows that the scaling function H should
behave like − ln(−εα)/(4β) for large negative εα; this is
confirmed numerically in the left inset of Figure 5.

Above the critical threshold, for εα = +δN1/3 with
δ > 0, c is driven away from 0 at speed ≈ δ/βN1/3 from
time t2 = −δ/βN1/3 to time 0 (see Eq. (77)), hence c ≈
δ2/β2N2/3 for a duration ≈ δ/βN1/3. Hence,

− ln pno−contr(t2init = −δN1/3 → t2 = tN1/3) ≈

1
12β

ln N +
δ3

β3
N. (87)

pno−contr vanishes exponentially with N as expected. H
should behave like ε3α for large positive εα; this is con-
firmed numerically in the right inset of Figure 5.
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Fig. 6. Illustration of the two relevant time regimes for the
probability pno−contr that no contradiction is found between
T = 0 and some step T . Points are data for the exact solution
of equation (34) in the case of 2-SAT at criticality (α = 1) for
sizes N = 25, 37, 51, 101, 151, 201, 251, 501, 751 and 1001 (in-
creasingly close to the N = +∞ asymptotic lines). Main plot:
− ln pno−contr − 1

12
ln N is plotted vs. t = T/N . This quantity

has a well-defined continuous limit when N → +∞ with fixed
t > 0 (dashed line); see text for the computation of this limit.
Because of the cross-over from the critical time-regime, con-
vergence is non-uniform; finite-size effects are huge except if
T 	 N2/3. Inset: − ln pno−contr is plotted vs. t2 = T/N2/3; it
has a well-defined continuous limit when N → +∞ with fixed
t2 > 0 (solid line). Convergence is non-uniform; finite-size ef-
fects are huge in the cross-over regime T 	 N2/3. Data for the
solid line are from numerical solution of equation (77) and the
asymptotic expression (85).

5.2.3 Matching together critical and non-critical time scales
— final result for Psuccess

Equation (85) may be written as, setting t2 + εα/β =
tN1/3,

− ln Psuccess(T = 0→ tN) =
1

4β(p)

(
1
3

ln N + ln t

)

+ H [εα, β(p)] +O
(

1
t3N

)
+ N−1/3Q(tN1/3, N) (88)

where Q(t2, N) is bounded when N → +∞ with fixed t2
14.

The behaviour of pno−contr for times T of the order of
N is illustrated in the main part of Figure 6 (for 2-SAT),

14 Q is like the sum of the asymptotic expansion of
− ln Psuccess in powers of N−1/3 without the leading term. Our
aim is to precise how Q(t2, N) behaves when both t2 and N
go to +∞.

where − ln pno−contr− 1
12 ln N is plotted as a function of t.

The dashed line is the N = +∞ result 1
4 (ln t− t)+H(0, 1)

(see below for the expression of Q). Data for finite-sizes
N (points) compare well with this result if T � N2/3;
otherwise there are strong finite-size effects and the critical
time regime results are relevant (see inset).

Outside the critical regime, the probability that no
contradiction is found can be calculated along the lines
of Section 4.1. In the N → +∞ limit with fixed ratio
T/N , the probability that no 0-clause is found between
times 0 < t < 1 and 1 satisfies

− ln pno−contr(T = tN → N) =∫ 1

t

dτ

4(1− τ)
d2(τ)2

1− d2(τ)
+O

(
N−1/3

)

= − ln t

4β(p)
+

∫ 1

t

dτf(τ) +O
(
N−1/3

)
(89)

since the reasoning that led to equations (42) and (44) is
still valid here: if tinit > 0 and α = αR(p)(1 + εαN−1/3)
according to equation (71), we know that d2(t) is bounded
away from 1 when N → +∞. Notice that the subdomi-
nant term in equation (89) is not of order 1/N like in
equation (42) because we approximate α with αR. The
expression for function f ,

f(t) := −1
4
− 3pt

8(1− p)
− 9p2

4(2− 5p)(3pt + 2− 5p)
, (90)

is found from equations (37) and (29).
Comparing equation (89) and equation (88) yields

N−1/3Q(tN1/3, N) = F (t) +O
(
N−1/3

)
+O (

t−3N−1
)

(91)
where F is a primitive of f . Using this expression for Q in
equation (88), setting t = N−1/3(t2 + εα/β) and letting t2
go to 0 shows that F (0) = 0. Finally, the probability of
success Psuccess is

− lnPsuccess =
ln N

12β(p)
+ H [εα, β(p)] + F (1) +O

(
N−1/3

)
(92)

with

F (1) =
ln β(p)
β(p)

3p

8(1− p)
− 4− p

16(1− p)
. (93)

The corrections due to the fluctuations of C2, temporarily
left aside, are of the order of, from equation (26),

O(N δ−4/3 ln N)

(without the ln factor if X0 = 1) and

O
[
N3/2−δ exp

(−N2δ−1/2
)]

where δ has to be in the range ]1/2, 2/3[. They are negli-
gible w.r.t. all other terms of equation (92). Notice that δ
has opposite effects on the two corrections, as was antici-
pated in the discussion following equation (26).
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Fig. 7. Comparison of equations (94)–(97) (lines) with em-
pirical estimates (symbols) for the probability of success of
the greedy UC algorithm on instances of the random 2 + p-
SAT problem at the critical initial constraint-per-variable ratio
αR(p) (i.e. εα = 0) for p=0, p = 1/7, p = 1/4 and p = 1/3,
and data for the probability of success of the greedy HL algo-
rithm [15] on instances of critical 2-SAT. The error bars are
smaller than the symbols’ sizes. Data for − ln Psuccess/ ln N are
plotted against 1/ ln N , and the straight lines come from our
asymptotic analytical results, equations (94–97) (ignoring the
O(N−1/3) terms), except for HL where it is a tentative extrap-
olation to N = +∞.

Let us give precise values for some special cases, to il-
lustrate the predictive power of our computation, although
we have no analytical formula for H . For the greedy algo-
rithm (X0 = 0) at the critical point (αR(p)), − lnPsuccess

equals, up to O (
N−1/3

)
,

ln N/12 + 0.24371± 10−5 − 1/4 (94)
ln N/9 + 0.24752± 10−5 − 9/32 + ln(3/4)/12 (95)
ln N/6 + 0.20157± 10−5 − 5/16− ln(2)/4 (96)
ln N/3− 0.208± 10−3 − 11/32− 3 ln(2)/2 (97)

for 2-SAT, 2+1/7-SAT, 2+1/4-SAT and 2+1/3-SAT re-
spectively.

Figure 7 compares these results with empirical suc-
cess probabilities, obtained by running the greedy UC al-
gorithm on a large number (4.105 to 3.106) of instances
of random 2+p-SAT at critical initial clauses-per-variable
threshold αR(p) with sizes up to N = 105. Interpretation
of the data could be difficult because finite-size effects are
strong. But if we take into account the finite corrections to
the ln N terms in equations (94)–(97), a very good agree-
ment is found.

Fig. 8. The normalized PDF ρ of c = C1/N
1/3 for 2-SAT at

the critical initial clauses-per-variable ratio α = 1 (εα = 0) and
at t2 = 0.3. Long-dashed line: limit result for ρ at N = +∞.
Dots: numerical results from 8.105 runs of the UC algorithm
for N = 105 (
; the error bars are smaller than the symbol’s
size) and results from the direct solution of equation (34) for
N = 501 (�) — see Appendix E. Lower-left inset: probability P
(expressed in N−1/3ρ(0)/2 units) that C1 takes finite values at
the N = +∞ limit (•). This shows how the discontinuity, at the
scale of c, between N1/3P (C1 = 0) = σ and limc→0+ ρ(c) = 2σ
is resolved at the scale of C1. Numerical data (same as for the
main plot) converge to P when N → +∞. Upper-right inset:
Normalized distributions ρ for N = +∞ at times t2 = 0.1
(solid line), t2 = 0.3 (long dashes) and t2 = 1.5 (short dashes).

5.2.4 The critical distribution of C1

In the critical time regime (T of the order of N2/3), the
PDF of c = C1/N

1/3 > 0 is the solution ρ of equation (68).
As a special case, the probability that no 1-clause is
present is σ ∼ N−1/3ρ(0)/2. Convergence to this distri-
bution, for c > 0 on one hand and for c = 0 on the other
hand, is observed numerically — see Figure 8. The con-
vergence is not uniform in the neighbourhood of c = 0,
which is expected since the distribution ρ is singular in
c = 0. There is rather a cross-over from the regime where
C1 � N1/3 to the regime where C1 is of the order of
N1/3. Equation (39) yields, going to the d2 → 1 limit
(well-defined if X1 > 0),

π0(X1) =
∑
C1

P (C1)XC1
1 =

1−X1

1−X1 exp(1−X1)
π0(0) .

(98)
Hence (for large N with fixed X1)

G1(X1) = N−1/3 ρ(0)
2

1−X1

1−X1e1−X1
+ o

(
N−1/3

)
. (99)
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The probabilities that C1 takes the values 0, 1, 2, ...
are given by the coefficients of the Taylor expansion, in
X1 = 0, of G1 above. It is observed that these probabili-
ties converge very quickly to N−1/3ρ(0), which coincides
with the c→ 0 limit of the distribution ρ of c = C1/N

1/3.
These probabilities are plotted in the lower-left inset of
Figure 8, together with numerical data for finite sizes. A
good agreement is found.

5.2.5 Universality

For a given p < 2/5, all algorithms that use the UP rule
fall into the same universality class (which depends on p).
They share the result equation (92) with common H (but
F (1) is a non-universal correction), and the critical distri-
bution of C1 studied in Section 5.2.4.

The reason is two-fold: first, the analysis done so far in
Section 5 is still valid for another heuristic than R, run on
random instances of the 2 + p-SAT problem, provided the
critical trajectory starts on the d2 = 1 line and is secant
to it with some slope β > 0. Second, the value of β at
criticality is universal and depends on p only, because, at
criticality, the heuristic is almost never used and UP alone
fixes the slope: even if the resolution trajectories of several
heuristics may be quite different in general (compare e.g.
Eqs. (29) for R and (31) for GUC), in the critical regime,
the probability that C1 = 0 and the heuristic is used is of
the order of N−1/3 only. Most of the time, the UP rule is
used, and the resulting evolution of c2 and c3 is common to
all algorithms: the slope of the critical trajectory is β(p) =
(2 − 5p)/[2(1 − p)] as for UC. We verified this by direct
computation from equation (29) for R, equation (31) for
GUC and the corresponding equations of reference [15] for
HL and CL.

Figure 7 shows the agreement of empirical data for the
HL heuristic, used on random 2-SAT instances, with the
scaling of Psuccess that we derived for the R heuristic.

6 The 3-SAT class (stretched exponential
class)

6.1 Equations and results for 3-SAT and its class

We now address the case p > 2/5. Here, the critical res-
olution trajectory starts below the d2 = 1 line and gets
tangent to it, at point (p = 2/5, α = 5/3) at a finite time,
t∗ ∈]0, 1[. From equation (29), d2(t) is locally a parabola
around t∗ : 1 − d2(t − t∗) ∝ (t − t∗)2. The critical reso-
lution trajectory is at distance ∆ = N−1/3 of the d2 = 1
line as long as t − t∗ is of order ∆1/2: the exponent a
equals 1/2 here and the relevant equation is equation (69),
not equation (68) as for 2-SAT. The computation is eas-
ier here (at least for the leading order) since we have an
ordinary differential equation (the time enters into play
only as a parameter of the coefficients of this ODE) rather
than a partial derivatives equation. The relevant scaling
for time is

T = t∗N + t3N
5/6 (100)

according to equation (60) where we replaced the notation
t0 with t3 to emphasize that this scaling is proper to the
3-SAT class.

As for 2-SAT, the critical regime extends to a non-
empty range of values of α. This critical window is the
same: we set

α = αR(p)(1 + εαN−1/3) (101)

with finite εα. Indeed, if α is less than αR(p) by more
than ∆ = N−1/3, because d2(t) is increasing proportion-
ally with α (see Eqs. (28) and (29)), the resolution trajec-
tory will be out of the critical region in particular at the
time t∗ where d2(t) is maximal since 1 − d2(t) � ∆, and
therefore at all times. Conversely, if α is above αR(p) by a
distance much greater than ∆, at time t∗ 1−d2 is an order
of magnitude higher than the critical distance ∆, which
implies that the resolution trajectory would stay for an
infinite duration, on the scale of t3 in equation (60) with
a = 1/2, above the d2 = 1 line – this would yield numer-
ous contradictions (0-clauses) and let the probability of
success be exponentially small.

6.1.1 Results for the critical time regime

We now have to solve equation (69). As for the 2-SAT
family, we prefer to do computations on the (here normal-
ized, or conditioned to success of the greedy algorithm)
PDF ρ of the stochastic variable C1/N

1/3 rather than on
its generating function π. Performing an inverse Laplace
transform on equation (69) yields

0 =
1
2
∂2

c ρ(c, t3) + e2(t3)∂cρ(c, t2)

+
1

2(1− t∗)
[c(t3)− c]ρ(c, t3) (102)

with the boundary condition,

1
2
∂cρ(0, t2) + e2(t3)ρ(0, t2) = 0. (103)

The parameters in equations (102) and (103) are t∗ =
5/6− 1/(3p) and e2(t3) = 36t23p

2/(p + 2)2 − εα.
Here, the initial condition is mostly irrelevant: the ini-

tial step of the algorithm, T = 0 or t∗ → −∞, is far out
of the critical time region (finite t∗). When the resolu-
tion trajectory enters this region, the distribution of C1

has already equilibrated to its critical value and is only
subject to ‘adiabatic’ changes during the crossing of the
critical region (Eq. (102) has no time derivative). Solving
the ODE (102) brings out the explicit critical distribution
of 1-clauses.

Let u(c, t3) := ρ(c, t3) exp[e2(t3)c], k(p) = [6p/(2 +
p)]−1/3 and

z :=
[
c− c(t3) +

2 + p

6p
e2(t3)2

]
/k(p). (104)
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Equation (102) is recast into an equation that admits
Airy’s Ai and Bi functions as linearly independent solu-
tions:

∂2
zu(z, t3)− zu(z, t3) = 0. (105)

See references in [23] for studies of equation (105) in the
context of (semi-classical) quantum mechanics or [24] in
the context of Brownian motion (similar to our situation).
Since u has to vanish for large z (because ρ(c, t3) → 0
for large c) whereas Bi(z) is not bounded for large z,
u(z, t3) = A(t3)Ai(z) where A is a normalization coeffi-
cient. The boundary condition equation (103) reads

Ai′(z0)/Ai(z0) = −k(p)e2(t3) (106)

where z0 is expressed from equation (104) with c = 0. Let
A be the reciprocal function of Ai′/Ai. Inverting equa-
tion (106) yields an expression for c(t3):

c(t3) = k(p)3e2(t3)2 − k(p)A [−k(p)e2(t3)] (107)

and

ρ(c, t3) = A(t3)e−e2(t3)cAi {k(p)c +A [−k(p)e2(t3)]} .
(108)

We did not compute explicitly the normalization con-
stant A(t3). The critical distribution ρ is plotted in Fig-
ure 9 for 3-SAT (p = 1) and several values of e2, to show
the influence of the drift on its shape. The agreement with
numerics is good; the same phenomenon in c = 0 as for the
2-SAT family is observed: at N =∞, ρ is singular, and for
finite N there is a cross-over from the regime C1 � N1/3

to the regime C1 = cN1/3 (see Sect. 5.2.4).
The probability that the greedy algorithm doesn’t find

a contradiction in the critical regime from time t
(1)
3 up

to time t
(2)
3 satisfies, according to equation (64) and the

discussion preceding it,

− ln pno−contr

(
t
(1)
3 → t

(2)
3

)
=

N1/6
[
µ

(
t
(2)
3

)
− µ

(
t
(1)
3

)]
+O

(
N−1/6

)
(109)

where, from equation (65) and the initial condition
pno−contr(T = 0) = 1, ∂t3µ = k(p)−3c(t3)/2 and µ(t3)→ 0
as t3 → −∞. In the interesting situation where t

(1)
3 <

0 < t
(2)
3 , using the y variable such that Ai′(y)/Ai(y) :=

−k(p)e2(t3) rather than t3,

µ
(
t
(2)
3

)
− µ

(
t
(1)
3

)
=

k(p)1/2

4

×
(∫ A[−k(p)e2(−t

(1)
3 )]

A[k(p)εα]

+
∫ A[−k(p)e2(t

(2)
3 )]

A[k(p)εα]

)

× dy√
k(p)εα −Ai′(y)/Ai(y)

[
Ai′(y)2

Ai(y)2
− y

]2

. (110)

Define (the integral is finite)

Φ(x) :=
1
4

∫ +∞

A(x)

dy√
x−Ai′(y)/Ai(y)

[
Ai′(y)2

Ai(y)2
− y

]2

.

(111)

Fig. 9. Critical distributions ρ for c = C1/N
1/3 in the case of

3-SAT with drifts e2 = 0.5 (solid line, ©), e2 = 0 (dashed line,
�) and e2 = −0.7 (dotted line, 
). Points are from numerical
estimates with size N = 104.

For large positive t
(2)
3 (and similarly for large nega-

tive t
(1)
3 ),

µ
(
t
(2)
3

)
− µ(0) =

√
k(p)Φ[k(p)εα]− k(p)3

4t
(2)
3

+O
(
t
(2)
3

−5)

(112)
where we have used a large-t3 expansion of equation (107).
From equation (100), t3 is of order N1/6 at most, thus
equation (112) allows one to express µ in terms of Φ only,
up to corrections of the order of N−1/6. Anticipating that
the non-critical time regime, like the success case in Sec-
tion 4.1, brings contributions to lnPsuccess of order O(1)
in N , the total probability of success (at time T = N) of
the greedy UC algorithm reads

− ln Psuccess[(1 + εα)αR(p), p] =

N1/62
√

k(p)Φ[k(p)εα] +O(1) (113)

where the function Φ is closely related 15 to the univer-
sal function introduced in reference [9]. It may easily be
computed with a mathematical software and is plotted in
Figure 10.

Let us heuristically check that the success and failure
cases are recovered from the critical results when εα tends

15 To lighten notations here, we have rescaled the argument x
and the value of Φ by constant coefficients w.r.t. reference [9].
Moreover, the new Φ is more universal: it is exactly the scaling
function at the tricritical point p = 2/5, α = 5/3 for all heuris-
tics (both rΦ

H and rεα
H equal one in this case) — see Section 6.2.
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Fig. 10. Empirical data for the probability of success of
the greedy algorithms with R and UC heuristics on 103 to
7 × 105 instances of the random 3-SAT problem, for several
initial clauses-per-variable ratios. Error bars are smaller than
the symbol’s sizes. Dotted lines are guides for the eye. Data
are plotted after rescaling their x and y axis with coefficients
rΦ and rε

α to compare them with universal scaling function Φ
(solid line), according to equation (126).

to −∞ and +∞ respectively. Using the asymptotic expan-
sions of Ai and Ai′ [25,26], the asymptotic behaviour of Φ
is found:

Φ(x) ∼ π

8
√−x

when x→ −∞

Φ(x) =
4
15

x5/2 − a

√
x

2
+ o(
√

x) when x→ +∞

where a ≈ −2.338107410 is the greatest zero of Ai
on the real axis. Taking now εα = N1/3ε shows that
− lnPsuccess ≈ π/(4

√−ε) for ε < 0, in agreement with
equation (49), and − lnPsuccess ≈ 4εN/15, in agreement
with the expected failure behaviour.

6.1.2 Matching critical and non-critical time scales — final
result for Psuccess

Here we use a heuristic reasoning, based on what we
learned from the study of the 2-SAT family. On the one
hand, the results from the previous paragraph show that
the probability no to find a contradiction between times
t∗N and T = t∗N + t3N

5/6 equals (with an obvious con-
vention for negative t3)

− ln pno−contr(T = t∗N → t∗N + t3N
5/6) =

N1/6 [µ(t3)− µ(0)] + R(t3, N) (114)

where the function R(t3, N) (assumed to be regular) is
bounded when N → +∞ with fixed t3. Setting t3 =
(t− t∗)N1/6 and using equation (112),

− ln pno−contr(T = t∗N → tN) = N1/6
√

k(p)Φ[k(p)εα]

− k(p)3

4
1

t− t∗
+O

(
N−1/6

)
+ R[(t− t∗)N1/6, N ].

(115)

On the other hand, out of the critical time regime, we
may modify equation (89) (with the expression of d2(t)
for α = 5/3) to compute the lost of success probability
in the large N limit between given times on the scale of
T/N . For t < t∗ and t > t∗ respectively,

− ln pno−contr(T = 0→ tN) = −k(p)3

4

(
1

t− t∗
+

1
t∗

)

+
1
4

ln
(

t∗ − t

t∗

)
+

∫ t

0

dτf(τ) +O
(
N−1/3

)
(116)

− ln pno−contr(T = tN → N) =

−k(p)3

4

(
1

1− t∗
− 1

t− t∗

)

+
1
4

ln
(

1− t∗

t− t∗

)
+

∫ 1

t

dτf(τ) +O
(
N−1/3

)
(117)

where f is the function

f(t) := − 3p

2(p + 2)
− 9p2

(p + 2)2
(t− t∗). (118)

Equations (116–117) share with equation (115) a diver-
gence in 1/(t− t∗), but they also have a logarithmic diver-
gence that does not appear in equation (115). We spec-
ulate that, if we pushed the asymptotic expansion for
large N that led to equation (114) one step further, we
would find

R(t3, N) = g(t3) + S(t3, N) (119)

with g(t3) ∼ ln(|t3|)/4 when t3 → ±∞ and with S(t3, N)
regular and bounded in the two limits, first N → +∞
with fixed t3, then t3 → ±∞. At this new order, the time-
derivative term ∂t0π(x1, t0) that was canceled to write
equation (69) becomes relevant. It yields a correction to
the probability of success that originates physically from
the slow, ‘secular’, evolution of the shape of the probabil-
ity distribution ρ of c = C1/N

1/3: the solution of equa-
tion (69) is the distribution of c in a true stationary state,
but here we have only a quasi-stationary situation (c is
slowly driven) and the actual distribution is always de-
layed w.r.t. the perfectly equilibrated solution of equa-
tion (69).
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With the assumption (119), equation (115) reads,
for t ≷ t∗,

− ln pno−contr(T = t∗N → tN) =

N1/6
√

k(p)Φ[k(p)εα]± 1
24

ln N ∓ k(p)3

4
1

t− t∗

± 1
4

ln |t− t∗| ∓ g(0) +O
(
N−1/6

)

+ S[(t− t∗)N1/6, N ] (120)

and comparing equation (120) with equations (116–117)
yields

S[(t− t∗)N1/6, N ] =
{

F<(t) +O (
N−1/6

)
if t < t∗

F>(t) +O (
N−1/6

)
if t > t∗

(121)
where F< and F> are two primitives of f . Replacing ex-
pressions (119) and (121) with t = t∗ + t3N

−1/6 in equa-
tion (114) and using the regularity of S in t3 = 0 shows
that

F<(t) = F>(t) =
∫ t

t∗
f(τ)dτ. (122)

Finally, adding equation (120) for the two cases t ≷ t∗
after making the substitution equation (122) yields the
total probability of success of the greedy algorithm UC =
UP + R for p > 2/5:

− lnPsuccess = N1/62
√

k(p)Φ[k(p)εα]+E(p)+O
(
N−1/6

)
(123)

with

E(p) =
3p(p− 4)
2(p + 2)2

− 3p

2(5p− 2)
+

1
4

ln
(

6p

5p− 2
− 1

)
.

(124)
While the N1/6 divergences of the two cases of equa-
tion (120) add up, the lnN divergences cancel out. Simi-
larly, if we set t = t∗−τ in equation (116) and t = t∗+τ in
equation (117), add the results and let τ → 0, the ln |t−t∗|
divergences cancel out. This seems reasonable since the
slow adaptation of the shape of ρ is symmetric w.r.t. the
time t∗: before t∗, the driving term in equation (69) pushes
c away from 0 and the equilibration delay of the distribu-
tion of c makes the actual c smaller than the perfectly
equilibrated c. Hence the lnN term in equation (120) for
t < t∗ has a negative contribution to the probability of
finding two contradictory 1-clauses. Conversely, after t∗,
the driving pulls c towards 0 back. The delay of c makes
it larger than what the perfectly equilibrated c would be.
This yields a positive ln N correction in equation (120).
The balance of the two slow adaptations is null for sym-
metry reasons.

The corrections due to the fluctuations of C2, tem-
porarily left aside, have order, after equation (26),

O[N δ−4/3 exp(−N1/6Φ)]

and O
[
N3/2−δ exp

(−N2δ−1/2
)]

with possibles choices of δ in the range ]1/2, 2/3[. Taking
δ in the range ]7/12, 2/3[ ensures that both corrections are
negligible w.r.t. all terms of equation (123).

The result (123) is compared to empirical success prob-
abilities of the greedy UC = R + UP algorithm on a large
number (2000 to 7×105) of instances of the random 3-SAT
problem with sizes up to N = 20000 in Figure 10. In spite
of strong finite-size effects (in 1/N1/6), there is an excel-
lent agreement because equation (123) provides also the
first subdominant term.

6.1.3 Universality

Any heuristic H run on a set of random instances with self-
averaging C2 and a typical C2 such that, for a given initial
constraint-per-variable ratio α, the resolution trajectory
becomes tangent to the d2 = 1 line at a finite time t∗ ∈
]0, 1[ with

1− d2(t− t∗) ∝ (t− t∗)2 (125)

has the same critical behaviour as R. Indeed, in such a
case, the generating function for C1 satisfies equation (34)
and one may use critical scalings for the quantities C1, T ,
α and Psuccess to derive equation (102) from equation (34).
In these scalings, the exponents are independent of H be-
cause the geometric situation expressed by equation (125)
is the same as for heuristic R. Solving equation (102) yields
the same scaling function Φ as for the R heuristic, i.e. there
exists numbers αH, rΦ

H and rεα

H (that depend on H and p)
such that16

− ln Psuccess[αH(1 + εαN−1/3)] =

N1/6 rΦ
H Φ (rεα

H εα) + EH +O
(
N−1/6

)
. (126)

EH is a non-universal correction (even the contribution
from a primitive of the universal term ln |t− t∗|/4 in equa-
tion (120) to EH is not universal because t∗ depends on H).
Scaling relation (126) is expected to hold for most, if not
all, algorithms using UP on random 2 + p-SAT instances
with p > 2/5. For GUC we performed analytic compu-
tations on the basis of equation (31). The values of the
numbers above are, in the case of p = 1, i.e. random 3-
SAT, with GUC heuristic:

αGUC ≈ 3.003494331
is such that 3αGUC/2− ln(3αGUC/2) = 3

rΦ
GUC = α

−1/12
GUC αR(1)1/1225/6 ≈ 1.764223038

rεα

GUC = (3αGUC/4− 1/2)α−1/6
GUCαR(1)1/62−1/3

≈ 1.363750542
FGUC(1) ≈ −1.2438849.

Empirical data for the probability of success of the UP+
GUC algorithm are compared with the universal func-
tion Φ in Figure 10 — as for heuristic R, the agreement is
very good, despite strong finite-size effects.

16 For heuristic R, rΦ
R = 2

√
k(p) and rεα

R = k(p).
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Notice also that the point where the critical resolution
trajectory gets tangent to the d2 = 1 line is universal. At
this point, the residual 2-clauses-per-unassigned-variables
ratio d2 = α(1 − p) = 1 and the residual 3-clauses-per-
unassigned-variables ratio αp = 3/2 so that each affecta-
tion of variable through UP produces, in average, a new
2-clause from the remaining 3-clauses — this is why d2(t)
has a vanishing derivative and the trajectory does not
cross the d2 = 1 line. Moreover, the resolution trajectory
(e.g. its curvature) is locally the same for all heuristics
since almost all time steps use UP; the chances that the
heuristic rule is used in one step during the critical regime
scale like P (C1 = 0) ∼ N−1/3. Therefore, improving some
heuristic may only affect the pre- and post-critical time
regimes. A good heuristic is one that does its best to
avoid the critical region, or to delay entering it as much
as possible.

6.2 The special case of 2+2/5-SAT

6.2.1 The tricritical point (p = 2/5, α = 5/3)

For p = 2/5, the critical window for α is the same as
for 2- and 3-SAT, α = 5/3(1 + εαN−1/3). The criti-
cal resolution trajectory is tangent to the d2 = 1 line
so that − lnPsuccess scales like N1/6 like in the 3-SAT
class. In addition, the delay of the actual distribution ρ
of c = C1/N

1/3 w.r.t. the fully equilibrated distribution
that solves equation (69) contributes to the success prob-
ability with a non-vanishing subdominant lnN term. This
is because, instead of reversing its direction, the driving of
c is directed towards 0 during the whole algorithm’s run,
for the critical resolution trajectory starts on the d2 = 1
line.

For times T of the order of N5/6, equation (102) is
relevant (with t∗ = 0 and e2(t3) = t23− εα). In the expres-
sion (110), k(p) = 1 and t

(1)
3 has to be 0. This yields

− lnPsuccess

[
5
3
(1 + εα),

2
5

]
= Φ(εα)N1/6 + o(N1/6).

(127)
The critical distribution ρ of C1/N

1/3 is the same as for
the 3-SAT family, up to scaling factors.

As for 3-SAT, we did not compute directly the correc-
tion due to secular evolution of ρ 17, but we deduced its
contribution to the final result by comparison between the
time scales of t3 = T/N5/6 and of t = T/N . For fixed t
and large N , equation (120) reads here

− ln pno−contr(T = 0→ tN) = N1/6Φ(εα) +
1
24

ln N

− 1
4 t

+
1
4

ln t− g(0) +O
(
N−1/6

)
+ S(tN1/6, N) (128)

17 This would be possible by keeping a further order in the
expansion of equation (34) and supplementing equation (69)
with a PDE where ρ appears as a driving term.

Fig. 11. Comparison of empirical estimates of Psuccess with
prediction equation (130) for εα = 0. We plot −[ln Psuccess +
Φ(0)]/ ln(N) as a function of 1/ ln(N). The straight line is the
analytical prediction, 1/24 − 5/8/ ln(N).

while equation (117) reads

− ln pno−contr(T = tN → N) =
1
4

(
1
t
− 1

)
− 1

4
ln t

− 3
8

+
1
4
t +

1
8
t2 +O

(
N−1/3

)
. (129)

Thus S(tN1/6, N) = −t/4− t2/8 + g(0), and

− lnPsuccess = N1/6Φ(εα)+ ln(N)/24−5/8+ o(1). (130)

This expression compares well with numerical estimates
in the critical εα = 0 case, see Figure 11.

As a side remark, in the range of time steps of the or-
der of N2/3, equation (77) with vanishing β(p) is relevant.
Numerical evidence shows that its solution ρ, once normal-
ized, converges to the PDF ρ that satisfies equation (102)
with e2 = t∗ = 0, which is natural since ρ is the stationary
solution of equation (77). This equilibration process takes
a finite range of time T/N2/3, but a vanishing range of
time t3: this is why the solution of equation (102) yields
a finite value for c(t3 = 0), whereas C1 at T = 0 is 0.

For p = 2/5, the scaling function Φ is truly universal,
in the sense that rεα = rΦ = 1 for all heuristics. Indeed,
the resolution starts already in the critical regime where
UP is used at almost every step and the heuristic becomes
irrelevant; the trajectory d2(t) is then locally universal.

6.2.2 Matching the 2-SAT family with the 3-SAT class

The refined scaling p = 2/5(1+εpN
−1/6) allows us to blow

up the transition between the 2-SAT family where Psuccess
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decays algebraically with exponent γ(p) and the 3-SAT
class where it decays as a stretched exponential. Now, the
critical window for α is α = 5

3 (1 + 2
3εpN

−1/6 + εαN−1/3),
e2(t3) = (t3 − 5

6εp)2 − 1
4ε2p − εα and

− ln Psuccess = N1/6Φ(εα, εp) + ln(N)/24 +O(1)

with

Φ(εα, εp) =
1
4

∫ +∞

A[εα− 4
9 ε2p]

dy√
εα + 1

4ε2p −Ai′(y)/Ai(y)

×
[
Ai′(y)2

Ai(y)2
− y

]2

(131)

for εα ≤ 4
9ε2p and εp ≤ 0. If we send εp to −∞ (as e.g.

−N1/6q) with εα � 4
9ε2p, Φ behaves like 1/εp and Psuccess

is finite. This was expected since, in this case, we dive into
the success region below the d2 = 1 line. However, if we
follow the d2 = 1 line and set εα = 4

9ε2p, Φ behaves like
− ln(εp)/εp and − ln Psuccess = ln(N)[1/24 − 1/(20q)] to
the leading order in N , which matches the singularity (51).

6.3 Case of K-SAT with K ≥ 4

For general K, that is for random instances with ini-
tially N variables and C2 2-clauses, C3 3-clauses, ..., CK

K-clauses, d2(t) may become tangent to the d2 = 1 line
with an exponent greater than 2: 1−d2(t− t∗) ∝ (t− t∗)n

with n < K, and the scaling exponent λ for − lnPsuccess

may take the value 1
3 (1− 1

n ). This happens when reduction
of j-clauses into j−1-clauses compensates exactly the lost
of j−1-clauses for j ≥ 4, so that d2(t) stays longer close to
the critical d2 = 1 line. n is necessarily integer because c2

is computed after solving a triangular system of equations
like (27). When n is odd, the critical resolution trajectory
crosses (with vanishing slope) the d2 = 1 line, coming from
the failure region (d2 > 1) into the success one. Thus the
critical behaviour may be reached only if the trajectory
starts on this line (initial C2 = N ; otherwise, the trajec-
tory stays for a number of time steps 0 ≤ T ≤ N of the
order of N in the failure region d2 > 1 and the probability
of success vanishes exponentially), and − lnPsuccess is nec-
essary accompanied with a lnN subleading term (because
of the secular equilibration of the critical distribution of
C1, like in the 2 + 2/5-SAT case).

The critical behaviour of the 2-SAT family is recovered
if the initial clauses-per-variable ratios αj = Cj/N are
low enough, with initial α2 = 1, so that the resolution
trajectory is secant to the d2 = 1 line at time t = 0. The
results for the R heuristic are universal (see Sect. 5.2.5)
and equation (32) leads to

Psuccess ∝ N

1

12(1− 3C3
2C2 ) (132)

provided α2 = 1, α3/α2 < 2/3, α4/α3 < 1, α5/α4 < 6/5,
. . ., αK/αK−1 < 2(K − 2)/K.

As for 2+p-SAT, the critical initial clauses-per-variable
ratios that yield a stretched-exponential behaviour are not
universal, but the position where the resolution trajec-
tory meets the d2 = 1 hyperplane (with exponent n) in
the space of the αj ’s is. It lies on the boundary of the
region that inequalities above define: if n = 2, α2 = 1,
α3 = 2/3 and α4 < 2/3. If n = 3, α4 = 2/3 additionally
but α5 < 4/5, and so on. The trajectory can’t reach tan-
gentially the boundary twice (because, in the neighbour-
hood of the points where the boundary is hit tangentially,
the flow is going away; coming for a second time to one
of these points would need to re-increase some clauses-
per-variable ratios, which is impossible precisely because
of the inequalities above); thus − lnPsuccess can have at
most one power-law divergence (i.e. only one power of N)
and one lnN divergence (always present when n is odd).

In the situation where the greatest power of N that
appears in − lnPsuccess is (1 − 1/n)/3, the technique of
computation based on equation (26) may still be applied,
provided that δ ∈]2/3−1/(6n), 2/3[. The shrinking of this
interval as n→ +∞ probably means that large deviations
of c2 for finite size N have more and more influence (on
the statistics of C1 and on Psuccess) as n is increased.

7 Discussion and perspectives

7.1 How well does UP estimate the ground state
energy of 2 + p-SAT formulas?

At the critical initial constraint-per-variable ratio α, the
probability Psuccess that an algorithm using the UP rule
finds a satisfying assignment to a random formula van-
ishes algebraically with large N . In contrast, for 2-SAT
and α = 1, such a satisfying assignment exists with fi-
nite probability [17], that we numerically estimated to
0.907 ± 10−3 – see Appendix A. To this respect, even
though the dynamic threshold of algorithms using the UP
rule is equal to the static threshold αC(p) for p < 2/5, they
perform not very well at the threshold (at least for p = 0).
But we argue here that they don’t overestimate too much
the minimum number of clauses that can be satisfied si-
multaneously in an instance of SAT. This number is also
commonly referred to as the ground state energy of the
instance. Finding it amounts to solve the so-called MAX-
SAT optimization problem, and, like the SAT problem [2],
this problem is classified as difficult by the computer sci-
entists. It is known to grow like (α−αR)3 for α > αR [27].

If we allow the greedy algorithm to keep running even if
0-clauses are found, the final number C0 of 0-clauses is an
upper bound to the ground state energy. The average C0

may be computed from the generating function G01 that
satisfies equation (34) with X0 = 1. Using non-zero values
of X0 doesn’t modify substantially the computations of
G1 that we did so far. Equation (77) reads now

∂t2ρ(c, t2) =
1
2
∂2

c ρ(c, t2) + β(p)t2∂cρ(c, t2)

− 1−X0

2
cρ(c, t2) (133)
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and equation (88) becomes

G01(→ tN1/3; X0, X1 = 1) =
1−X0

12β(p)
ln N +

ln t

4β(p)
+ H [X0, εα, β(p)] +O

(
1

t3N

)

(134)

where H depends also on X0. Deriving equation (134)
w.r.t. X0 and setting X0 = 1 yields

〈C0〉(→ tN1/3) =
1

12β(p)
ln N + ∂X0H [X0, εα, β(p)]

∣∣
X0=1

+O
(

1
t3N

)
.

(135)

We know that, if X0 = 0, H [X0, εα, β(p)] behaves like ε3α
for large positive εα. Assuming that the behaviour is the
same for general X0, the average number of 0-clauses at
the end of the critical time regime is

〈C0〉(→ tN1/3) ≈ h(p)[α−αR(p)]3N +
1

12β(p)
ln N +O(1)

(136)
for some universal number h(p) (as in Sect. 5.2.5, in the
critical regime the heuristic is almost never used, only UP
is used, hence h(p) is universal, or, in other words, in-
dependent of the heuristic). The subsequent non-critical
time regime N1/3 � T ≤ N brings only a finite contri-
bution to 〈C0〉. Therefore, algorithms using UP give an
upper bound to the ground state energy of 2+p-SAT prob-
lems with p < 2/5 that grows with α like h(p)(α − αR)3.
This speculation agrees well with numerical results for
the average C0 at the end of runs of UC = UP + R or
UP + HL on instances of 2-SAT, see Figure 12. The scal-
ing 〈C0〉 ∝ N1/12 is also numerically correct (not shown
in the figure).

The exponent 3 in h(p)(α−αR)3 agrees with the (non-
rigorous) results for the ground state energy of random
2-SAT computed in Section VI of [27]. However, the nu-
merical estimate h(0) ≈ 0.27 (see Fig. 12) is clearly dif-
ferent from the coefficient 0.15 computed in Section VI
of [27]: the bound that UP provides is not tight18. As a
side remark, general rigorous results [28,29] show that, us-
ing techniques quite different from UP, one can design an
algorithm running in polynomial time that finds, for any
instance of random 2-SAT, an assignment which satisfies
at least 93.1% of the number of clauses that can be satis-
fied simultaneously in that instance (let us call this num-
ber optimum of the instance; it is the difference between
the number of clauses and the ground state energy). Con-
versely, it is proved impossible to find a polynomial time-
algorithm that would, for each instance, satisfy simulta-
neously a number of clauses of at least 21/22 ≈ 95.5% of
the optimum (for 3-SAT, these two bounds become 7/8).
For 2-SAT, our results state that, in average, the poly-
nomial time greedy algorithms that use UP outperform
18 It might be that the exact ratio of h(p) to the coefficient
of the ground state energy is 2.

Fig. 12. Numerical test of the scaling relationship (136) for
the UC=UP+R and UP+HL algorithms on 2-SAT (data are
for heuristic R when not otherwise stated). The rescaled aver-
age number of 0-clauses (〈C0〉/N)1/3 is plotted vs. the initial
clauses-per-variable ratio α. The error bars are smaller than
the symbol’s sizes. The solid line is a tentative fit with slope
0.65 ≈ 0.271/3. For α = 1, finite-size effects are strong since
〈C0〉 decreases with N as N−1/12, which is consistent with
equation (136). Using the HL heuristic rather than the fully
random R heuristic gives some improvement for finite sizes,
but no improvement in the thermodynamic limit because the
heuristic plays no role in the critical regime.

these worst-case bounds for α close to αR (they satisfy in
average a number of clauses that tends to the optimum as
α tends to αR, although on some rare instances they may
perform badly). It might be interesting to know the aver-
age behaviour of the algorithms of [28,29] and see whether
they get closer to the ground state energy as algorithms
based on UP.

7.2 Interpretation as a random graph percolation
phenomenon

Introduction of the oriented graph G representing 1- and
2-clauses allows us to re-interpret some of the scalings that
we found in the previous sections. G is made of 2 (N − T )
vertices (one for each variable xi and its negation x̄i),
C1 marked vertices (one for each 1-clause zi), and 2 C2

edges (zi∨zj is represented by two oriented edges z̄i → zj

and z̄j → zi) [1,17]. d2 is simply the average (ingoing or
outgoing) degree of vertices in G.

A step of UP removes a marked vertex, say z, and
its attached outgoing edges, after having marked its de-
scendants (2-clauses with z̄ are reduced). If z̄ appears in
some 3-clauses, these clauses become 2-clauses, i.e. new
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pairs of edges in G. UP-steps are repeated until no vertex
is marked, then some vertex is marked according to the
heuristic of the algorithm and another round of UP starts.
During a round, there is a competition between the elimi-
nation of edges and vertices and the creation of new edges.
All vertices in the (outgoing-edges) connected component
of the initial G that started with the first marked ver-
tex are removed. In addition, the vertices that have been
linked to this component through the new edges are also
removed. A contradiction arises (a 0-clause appears) when
two conjugate vertices z and z̄ are marked. When G per-
colates (this happens for d2 ≥ 1 [30,17]), there exist many
oriented loops going from one literal z to its conjugate
and back to it [1]. Marking a vertex of such a loop results
sooner or later in the marking of both z and z̄, and the
algorithm fails. Conversely, if G doesn’t percolate, there
is no such loop with finite probability. The success/failure
transition of the algorithms using UP is related to the
percolation transition of G; if the value of d2 is bounded
away from 1, G never percolates and the probability of
success if finite. Although the results for percolation of
random graphs were obtained in a static context, they ap-
ply readily to the graph G that is kinetically built, because
of conditional uniformity (see Sect. 3.1).

Notice that the percolation phenomenon of random
graphs is very robust. For instance, taking random graphs
conditioned to a certain degree distribution of the ver-
tices [31] does not change the universality class if the prob-
ability of the large degrees decays not too slowly. Such
(directed) graphs G appear in the context of algorithms
with the HL or CL heuristics that select literals accord-
ing to their degrees. We have checked numerically for HL
that the degree distribution in G is far from the Poisson
distribution that we find for non-conditioned G’s (e.g. for
R and GUC). Still, the probabilities of finding vertices of
high degrees decrease fast and G has the same percolation
critical behaviour as a random graph. A parallel can be
drawn between the robustness of the critical behaviour of
random graphs and, in our computation, the weak depen-
dence of the probability law for C1 on that of C2 (only the
average of C2/N matters thanks to self-averaging).

In the percolation critical window |d2 − 1| ∼
N−1/3 [30,17], the probability that a vertex belongs to
a component of size S is Q(S) ∼ S−3/2 [31], with a cut-off
equal to the largest size, N2/3. From Figure 3, departure
ratios α have to differ from αflat by N1/3 for resolution tra-
jectories to fall into the critical window. Hence the critical
window in α has width N−1/3 for both the 2-SAT family
and the 3-SAT class.

When the resolution trajectory is tangent to the d2 = 1
line (3-SAT class), it spends the time ∆t ∼ √|d2 − 1| ∼
N−1/6 in the critical window, corresponding to ∆T =
N ∆t ∼ N5/6 eliminated variables. Let S1, S2, . . . , SJ be
the sizes of components eliminated by UP in the critical
window; we have J ∼ ∆T/(

∫
dS Q(S)S) ∼ N1/2. During

the jth elimination, the number of marked vertices ‘freely’
diffuses, and reaches C1 ∼

√
Sj . The probability that

no contradiction occurs is [(1 − q)C1 ]Sj ∼ exp(−S
3/2
j /N)

where q ∼ 1
N is the probability that a marked ver-

tex is the negation of the one eliminated by UP. Thus
− lnPsuccess ∼ J

∫
dS Q(S)S3/2/N ∼ N1/6, giving λ = 1

6 .
Notice that, while the average component size is S ∼ N1/3

(and thus the probability that C1 vanishes in the critical
time regime is ∼ N−1/3, consistently with Eq. (56)), the
value of λ is due to the largest components with S ∼ N2/3

i.e. C1 ∼ N1/3 marked vertices.
In the case of the 2-SAT family, the algorithm elim-

inates only ∆T ∼ N2/3 variables and J ∼ N1/3 con-
nected components. The estimation above yields a finite
− lnPsuccess and fails to predict the correct answer because
it doesn’t take the ln N corrections into account.

For general K-SAT, one may attach to an instance a
family of oriented hypergraphs were vertices are the lit-
erals and the l-clauses are l-hyperedges, for 2 ≤ l ≤ L
and some fixed integer L between 2 and K. The first
graph of this family, for L = 2, is G. The critical be-
haviours exhibited in Section 6.3 appear when the first
hypergraphs, 2 ≤ l ≤ L for some 3 ≤ L ≤ K, per-
colate. This happens [32] for clauses-per-variable ratios
αl = 2l−1/[l(l− 1)] for 2 ≤ l ≤ L; then − lnPsuccess ∼ Nλ

with λ = 1
3 (1− 1

L−1 ).

7.3 Unit-Propagation in other problems

The Unit-Propagation rule that we defined for SAT prob-
lems may easily be generalized to other contexts. In the
graph coloring problem, one wants to know if the vertices
of a given graph may be colored with K colors in such a
way that no two vertices that share an edge have the same
color. A family of algorithms that deal with such graphs
processes the graph by maintaining the list of available
colors on each vertex (initially the list of all K colors) [33,
34]. When a vertex is colored with some color, this color
is removed from the list of available colors of the neigh-
bours of this vertex. The UP rule would be defined as:
“When, on the partially colored graph, at least one vertex
has only one available color, color it with this color prior
to any other action”. We expect equation (34) to hold
also for such graph coloring algorithms, after choosing a
relevant value for C2. This value may be computed by
the technique of differential equations [33,34] like in equa-
tions (27). The probability of success of the randomized,
greedy coloring algorithms should behave like Psuccess for
K-SAT; in particular, for the case of 3 colors, it should
have a success-to-failure transition with critical behaviour
in N1/6.

Similarly, the study of greedy algorithms using UP for
other hard decision computational problems [35] should
lead to the same critical behaviour (that is, problems
where the answer of the algorithm should be either “yes
– satisfiable – colorable – ...” or “no – unsatisfiable – un-
colorable – ...”).

In the framework of error-correcting codes, the authors
of reference [36] also found a critical behaviour that is
governed by a Brownian motion with parabolic drift [24],
which leads to Airy distributions, as we found for C1 in
Section 6.
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There is another important family of problems, called
optimization problems, where the answer is a number. For
example, in the MAX-SAT problem, believed to be a hard
computational problem, one wants to know, for some in-
stance of SAT, the maximal number of satisfied clauses
or, equivalently, the ground state energy, i.e. the minimal
number of violated clauses over all assignments of vari-
ables of this instance. In the context of graph coloring,
one may look for the minimal number of colors needed
to color some graph, etc. Knowing whether their random
formulation (where instances are drawn uniformly at ran-
dom) fall into the same universality classes as the random
SAT problem requires more investigation. However, each
optimization problem has a decision version, which can be
related to this work. For instance, the decision version of
random MAX-2+p-SAT would be: “is there an assignment
of the variables of this instance such that the number of
violated clauses does not exceed some fixed number m?”
We can deal with it by asking for the probability that the
greedy algorithm using UP ends, after having assigned all
variables, with a number C0 of 0-clauses that does not
exceed m. As long as m is bounded in the large N limit,
this new success probability can be computed by summing
the 0th, 1st, 2nd, ..., mth derivatives of G01(X0, 1; N |C2)
with respect to X0 in X0 = 0. A dynamic phase tran-
sition between success and failure phases is found as for
the random 2+p-SAT problem and, both for p < 2/5 and
p ≥ 2/5, the largest term in the expression for − lnPsuccess

at criticality is independent of m: the critical exponents
are unchanged, although subdominant terms now depend
on m (in particular, for p < 2/5, terms in m ln(ln(N))
appear in the expression of − lnPsuccess at criticality). We
expect the exponents to remain the same for algorithms
using UP on the decision version of other optimization
problems. It would be interesting to know what happens
when m is allowed to become large with N .

Another interesting question is whether instances of
SAT (or other problems) with strong correlations, such
that self-averaging of C2 is lacking, would lead to new
universality classes. This could be the case for instances
of SAT such that G can be embedded into a finite-
dimensional space, or with a power-law distribution of
the number of occurrences of variables in clauses, pos-
sibly built by preferential attachment of new variables to
highly-connected old variables. Graphs with such features
are observed in real-world applications such as the ‘World
Wide Web’ or social networks; they might be helpful in
modeling industrial instances of SAT better than the ran-
dom, ‘flat’ distribution.
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Appendix A: Numerical estimate
of the probability of satisfiability for critical
2-SAT

Reference [17] rigorously proves that the probability of a
random 2-SAT formula of size N with initial constraint-
per-variable α = 1 is finite (whereas it vanishes for large
N if α > 1). A numerical estimate of this probability was
given in Figure 5 of reference [18], but for very small sizes
N (up to 90). We give here more precise results, based on
numerical estimates of the probability of satisfiability for
formulas of sizes N = 500 to 5×106. For each size N up to
106, we drew at random more than 3× 106 instances (for
N = 5×106, we drew only 105) and we determined if they
were satisfiable or not thanks to the well-known algorithm
of reference [1]. This algorithm finds, by depth-first explo-
ration, the strongly connected components of an oriented
graph built from the 2-clauses, similar to the graph we in-
troduced in Section 7.2. Results from the simulations are
plotted in Figure 13. They appear to be fully consistent
with the finite-size scaling hypothesis

Psat(N) = Psat∞ + Θ
(
N−1/3

)
(A.1)

and yield
Psat∞ = 0.907± 10−3. (A.2)
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Appendix B: Path-integral formalism
for the kinetics of search

The standard, yet non-rigorous, technique of path inte-
grals is another tool to study the search process. Let us re-
derive some results of Sections 3 and 4.1 with it; this will
show the correspondence between, on one hand, K-SAT re-
lated quantities and physical quantities such as moments,
and, on the other hand, generating functions techniques
and path-integral techniques, hopefully bringing more in-
sights to both approaches.

We start from the evolution equation (7) and write
the probability P (T ) that the search process doesn’t pro-
duce any 0-clause from times 0 to T as an iteration (this
quantity was G(0, 1, 1, . . . , 1; T ) in Sect. 3):

∑
BT

P (BT ; T ) =
∑
BT

∑
BT−1

. . .
∑
B1

M(BT ← BT−1; T − 1)

×M(BT−1 ← BT−2; T − 2)× . . .×M(B1 ← C0; 0)

=
∑

C1,...,CT−1

∑
B1,...,BT

∫ π

−π

dy1

(2π)K
. . .

dyT

(2π)K

× exp

(
T∑

L=1

ı̂yL.(BL −CL)

)
T−1∏
L=0

M(BL+1 ← CL; L)

(B.1)

with C0 := (0, 0, . . . , 0, αN) and ı̂2 = −1. All clause vec-
tors are, in this Appendix, of dimension K instead of K+1
since the number of 0-clauses is always zero. The yL’s con-
strain the CL’s to mimic the BL’s, so that we can write
the formally quadratic expression M(BL+1 ← BL; L) as
the uncoupled expression M(BL+1 ← CL; L). Carrying
out the sums over the BL’s first, we obtain

P (T ) :=
∑
BT

P (CT ; T )

=
∑

C1,...,CT

∫ π

−π

dy1

(2π)K
. . .

dyT

(2π)K
exp

(
−

T∑
L=1

ı̂yL ·CL

)

× exp

(
T∑

L=0

ln [f(XL; L)] · CL

)

×
T∏

L=0

[
(1 − δ(CL)1,0) e−ı̂(yL)1 + δ(CL)1,0

]
(B.2)

where (XL)i = exp(̂ı(yL)i), the vector-valued function
f = (f1, f2, . . . , fK) is defined through (12) and the dot
denotes the usual scalar product of R

K . In the large N
limit, a continuous formulation for P (T ) can be obtained.
Let us define the reduced time, � = L/N and the clause
densities c(�) = C(L)/N . Define for i = 1, . . . , K

γj(y; t) :=
j

1− t

(
e−yj(1 + eyj−1)

2
− 1

)
(B.3)

with y0 := −∞, and γ := (γ1, . . . , γK). The probability P
at time T = tN can be written as a path integral over the

values of clause densities c and (from now on complex)
’momenta’ y between times 0 and t,

P (tN) =
∫ c(t)=(c1,c2,...,cK)

c(0)=(0,0,...,0,α)

Dc(�)Dy(�)

× exp
(
−N S[{c(�),y(�)}]

)
(B.4)

where the action reads

S[{c(�),y(�)}] =
∫ t

0

d�

{
y(�).

dc
d�

(�)− γ
(
y(�); �

)
.c(�)

− ln
[
ρ1(�) e−y1(�) + 1− ρ1(�)

]}
(B.5)

where ρ1(�) denotes the probability that there is at least
one unit clause at time � i.e. the number of instants L
such that C1(L) ≥ 1 between L = �N and L = �N +
∆L, divided by ∆L, with 1� ∆L � L. Minimization of
the action (B.5) yields the classical equations of motion.
Differentiating with respect to momenta, we find

δS
δyi(�)

= 0→ dci

d�
(�) =

∑
j

∂γj

(
y(�); �

)
∂yi(�)

cj(�)

− δi,1 ρ1(�)
ρ1(�) +

(
1− ρ1(�)

)
ey1(�)

(B.6)

for i = 1, . . . , K. Some care has to be brought to the mini-
mization of the action with respect to the clause densities
since ρ1 and c1 are not independent. During the time in-
terval [�, � + d�], the number C1 of unit clauses is either
of the order of N (c1 > 0 and ρ1 = 1) or of the order of
unity (c1 = 0 and ρ1 < 1) 19. With this caveat, we obtain

δS
δci(�)

= 0→ dyi

d�
(�) = −γi

(
y(�); �

)
(i = 2, . . . , K)

(B.7)
and

– if c1(�) > 0, then ρ1(�) = 1 and

δS
δc1(�)

= 0→ dy1

d�
(�) = −γ1

(
y(�); �

)
(B.8)

– if c1(�) = 0, then ρ1(�) is given by equation (B.6) for
i = 1,

1
ρ1(�)

= 1− e−y1(�) + e−y1(�)

(
∂γ2

(
y(�); �

)
∂y1(�)

c2(�)
)−1

.

(B.9)
Equation (B.9) makes sense if the r.h.s. is larger than
unity. In the case where y1 = 0, it agrees with equa-
tion (40).

19 This statement is true outside the critical regime where c1

and ρ1 are both vanishing as (negative) powers of N .
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Appendix C: Large t2-expansion
of the solution ρ of the PDE (77)

In this Appendix we explain the method we used to get
an asymptotic expansion of the solution of equation (77)
at large times t2, and we quote the results. Equation (77)
is here treated in the general case X0 ∈ [0, 1] and reads

∂t2ρ(c, t2) =
1
2
∂2

c ρ(c, t2)

+ β(p)t2∂cρ(c, t2)− 1−X0

2
cρ(c, t2). (C.1)

First, we change the variables c and t for u := ct2 and
s := 1/t2 respectively, and define g as g(u, s) := ρ(c, t2).
This is motivated by the expectation that, at large times
t2, both the drift term (that pushes diffusing particles to-
wards the c = 0 boundary) and the absorption term (that
kills situations where many particles are away from the
c = 0 boundary) constrain the PDF ρ to be concentrated
around the c = 0 boundary: ρ(c, t2) will be non-vanishing
only for values of c that tend to 0 as t → +∞. With this
choice of scale, equation (C.1) turns at the leading order
in s when s→ 0 into

∂2
ug(u, s) + 2β∂ug(u, s) = 0 (C.2)
∂ug(0, s) + 2βg(0, s) = 0 (C.3)

hence g(u, s) = A(s) exp(−2βu): c has at large times
an exponential statistical distribution, with average (con-
ditioned to success of the greedy algorithm) c(t2) =
1/(2βt2).

To actually compute the normalization factor A(s), we
need to introduce formally the correction to this leading-
order term. Let ρ(c, t2) =: A(s) exp(−2βu) + B(s)h(u, s)
with the requirement B(s)� A(s) as s→ 0. The leading-
order terms in equation (C.1) (after cancellation of the
formerly leading-order terms) satisfy

[−2βsuA(s)− s2∂sA + us(1−X0)A(s)/2
]
exp(−2βu)

= s−2B(s)
(
∂2

uh + β∂uh
)

(C.4)

with the boundary condition ∂uh(0, s) + 2βh(0, s) = 0.
This yields, after integration from u = 0 to +∞ (we as-
sume that h(u, s)→ 0 when u→ +∞ just like ρ does),

A(s) ∝ s−1+
1−X0

4β (C.5)

and, for the leading order of ρ(c, t2) at large times:

ρ(c, t2) ∝ t
1− 1−X0

4β

2 exp(−2βct2). (C.6)

This shows that the probability of success of the algorithm
decays algebraically at large times t2:

π(0, t2) =
∫ +∞

c=0

ρ(c, t2)dc ∝ t
− 1−X0

4β

2 . (C.7)

Subleading orders in the expansion of ρ at large t2 may
be found iteratively by the same technique. For the sake
of completeness, let us quote here what we found:

ρ(c, t2) ∝ t
1−(1−X0)/4/β
2 e−2βct2

×
[
1 +

(
1− 1−X0

4β

) (
c2t22 −

6β − 1 + X0

12β3

)
t−3
2

+
(

1− 1−X0

4β

) {
c2t22
48β4

[
(6β3X0 + 24β4 − 6β3)c2t22

+(48β3 + 8β2X0 − 8β2)ct2
+(−2β + 2X0β + 2X0 + 48β2 − 1−X2

0 )
]

−6β − 1 + X0

1152β7
×(384β2 − 50β + 50X0β

−1 + 2X0 −X2
0 )

}
t−6 + o(t−6)

]
(C.8)

and, for the conditional average of c:

c(t2) =
1

2βt2
+

4β − (1−X0)
8β4t42

+
5

32β7t72
[4β − (1−X0)] [5β − (1−X0)] + o(β−7t−7

2 ).

(C.9)

Notice that the expansions here can only be asymptotic
series, without a finite radius of convergence (as a function
of s = 1/t2), because they are independent of the initial
conditions. Indeed, fix ε > 0 and suppose that the sum
of the expansion for ρ above is the right solution, up to
a uniform small difference ε, on a finite interval of t2, say
]A, +∞[. Let ρapprox(c, t2) be this sum of the expansion.
Then ask for the solution of equation (77) that has initial
condition ρ(c, A+1) = ρapprox(c, A+1)+10ε: it should also
be ρapprox(c, A + 1) up to a difference ε — contradiction!
Therefore, the precision of the approximations obtained
with partial sums of the expansion above decreases as we
try to get values for smaller and smaller times t2, and we
should keep that in mind when we use the present results.

Appendix D: Small t2-expansion
of the solution ρ of the PDE (77)

In this Appendix we explain the method we used to get
an asymptotic expansion of the solution of equation (C.1)
at small times t2, and we quote the results.

We use the exact solution of equation (C.1) without
the non-linear term cρ(c, t2) (that is, for the special value
X0 = 1) as a guide for a relevant choice of variables. Disre-
garding the boundary condition equation (79), we easily
solve the resulting linear PDE thanks to Fourier trans-
form:

ρlinear(c, t2) =
constant√
t2 − t2init

× exp

{
− 1

2(t2 − t2init)

[
c +

β(p)
2

(t22 − t22init)
]2

}
(D.1)
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which suggests us to use the following variables for our
expansion:

v := t2 − t2init, u :=
c + β(p)/2(t22 − t22init)√

t2 − t2init
,

ρ(c, t2) =:
1√
v
g(u, v) .

The equations for g are

2v∂vg = ∂2
ug + u∂ug

+
[
1− (1−X0)v3/2u + (1 −X0)β(p)/2v2(2t2init + v)

]
(D.2)

∂ug[β(p)/2
√

v(2t2init + v), v] =

− 2β(p)
√

v(t2init + v)g[β(p)/2
√

v(2t2init + v), v].
(D.3)

At t2 = t2init, i.e. at v = 0, g is Gaussian, as expected from
the study of the linear equation (with X0 = 1): g(u, 0) =√

2π−1 exp(−u2/2). Letting vγh(u, v) be the deviation, at
positive times v, between the exact g and this Gaussian
expression, and substituting this into the equations for g,
we see that the boundary condition constrains γ to the
value 1/2, and we are led to the ODE for h(u, 0)

∂2
uh(u, 0) + u∂uh(u, 0) = 0 (D.4)

with boundary condition ∂uh(0, 0) = −2β(p)t2init/
√

2π.
Adding the physical requirement that h(u, 0)→ 0 as u→
+∞, we find the unique solution h(u, 0) = β(p)t2init[1 −
erf(u/

√
2)]. Going on with this iterative process, we find

that ρ(c, v = t2 − t2init) has the following expansion at
small v:

ρ(c, v) =

√
2
πv

exp
[
− (c + βvw)2

2v

] [
1 + 2β2t22initv

−v(c + βvw)
(

3β

4
+

1−X0

8
+ 2β3t32init

)
+ o(v)

]

+
(

1− erf
c + βvw√

2v

) {
βt2init − 2β2t22init(c + βvw)

+ v

(
3β

4
− 1−X0

8
+ 2β3t32init

) [
(c + βvw)2

v
+ 1

]

+ o(v)
}

(D.5)

where w stands for (2t2init + v)/2. Hence the expression
for the conditional average of c:

c(t2) =

√
2
π

√
t2 − t2init − β(p)

2
t2init(t2 − t2init)

+
β(p)2

6

√
2
π

t22init(t2 − t2init)3/2

+ (t2 − t2init)2
[
9(1−X0) + 10β(p)

32

− 2
3π

(1−X0)
]

+O
[
(t2 − t2init)5/2

]
. (D.6)

Appendix E: Direct numerical solution
of the evolution equation (34)
for the generating function G1

For limited sizes N of the problem, equation (34) may
be solved directly, with exact or high precision computer
arithmetic. It may be used to compute the probability
of success of the greedy algorithm from time steps 0 to
T , G1(1, T ) or the distribution of C1 from the generating
function G1.

We assume that X0 = 0 and that C2 is known
(from e.g. Eq. (29)). At T = N , C1 is either 1 or 0
and a useful set of values of X1 in equation (34) is
0, 1 only. To compute G1(X1, N) with X1 = 0 or 1,
it is enough to know G1(X1, N − 1) with X1 = 0,
1/2 or 1 after equation (12) (we set X0 = 0). This
in turns requires successively the values G(X1, T ) for
all X1 ∈ 0, 1/[2(N − T )], 1/(N − T ), . . . , 1. Starting from
the known initial condition G(X1, 0) = 1, it is possi-
ble to compute iteratively, from T = 0 to N , all values
G(k/[2(N − T )], T ) for 0 ≤ k ≤ 2(N − T ) (at each step,
only 2(N−T )+1 numbers are stored). In practice, getting
accurate results requires either doing exact arithmetics
(which may be quite slow and/or memory consuming)
or working with high precision floating point arithmetic
(roughly speaking, the number of decimals digits has to
be equal to N). This limited the range of N to a few
hundreds on the computer we used (2.4GHz Pentium IV
processor with 1GB of RAM).

Using rounded, integer values for C2 rather than sim-
ply N × c2 from equation (29) makes computations much
faster. In the case where exact arithmetic is used, it is
needed to manage only rational numbers. For N large
enough, it brings only a small error on G1.

If the number of 1-clauses at time T is bounded by
2(N −T ), C1 is a polynomial of degree at most 2(N −T ).
Knowing its 2(N − T ) + 1 values G(k/[2(N − T )], T ) is
enough to compute it: G1 may be expressed as a weighted
sum of Lagrange interpolating polynomials. Finally, the
coefficients of G1(X1) indicate the probability law of C1.
We used this technique to get the numerical results for
the distribution of C1 for 2-SAT with N = 501 that are
plotted in Figure 8. Contrary to estimates based on runs
of the very algorithms under study, it doesn’t require av-
eraging over many series since there is no randomness in
the computation.
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